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Abstract
Using a rigorous, computational notion of locality, this paper evaluates one of the 
central motivations for autosegmental representations (ARs)—that they reduce long-
distance processes to local ones. We analyze a variety of tone processes using two 
computational notions of locality: input strict locality as defined by Chandlee (2014) 
and Chandlee & Jardine (2019a) and a corresponding notion of output strict locality 
we call recursive strict locality. The results of our survey add to our understanding of 
the typology of tone patterns and the role of ARs in two key ways. First, they indicate 
that both input and output locality play a role in a comprehensive theory of tone. 
Second, they reveal the various mechanisms by which ARs render long-distance 
patterns local by disentangling the various properties these representations combine. 
The larger contribution then is a more detailed and nuanced exploration of the 
interaction of representation, locality, and computational complexity in the domain 
of tonal phonology.
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1 Introduction
Locality has long played a role in phonological theory as a restriction on possible grammars, with 
various proposals put forth over the years for what it means to be ‘local’. Preserving locality was 
in fact one of the major motivating factors behind the use of feature-geometric, autosegmental 
representations (ARs; Williams 1976; Goldsmith 1976; Clements 1977). As Odden (1994: 289) 
states, the advantage of ARs is that they “[make] it possible to view apparently long-distance 
rules as rules operating between segments which are adjacent at a specified level, even though 
the segments are not adjacent at all levels of representation”. However, since the advent of 
Optimality Theory (OT; Prince & Smolensky 1993), the utility of nonlinear representations has 
explicitly come into question (Leben 2006; Hyman 2014a; Shih & Inkelas 2019).

At the same time, recent work in theoretical computational linguistics has made it possible 
to rigorously study representations and locality. There are many ways in which locality can 
be conceptualized, but theoretical computer science provides one grounded in principles of 
computation that can be readily applied to natural language in general and phonology in 
particular (Rogers & Pullum 2011; Chandlee & Heinz 2018). Briefly, a local computation is one 
which operates over some contiguous sequence of k positions in a string, as exemplified in (1).

(1) a1 a2 ... τ1 τ2 ... τk ... an

For example, a *Clash constraint against adjacent H-toned syllables (Zoll 2003), as in (2a), 
is local in this sense because it evaluates contiguous sequences of length 2. The string in (2b) 
violates (2a) because it contains the forbidden sequence, whereas (2b) does not.

(2) a *σ́σ́
b. σσσ σ́σ́ σ
c. σσ́σσσ́σ

However, it is common for phonological elements to interact at a distance, and this is 
particularly prevalent in tone (Yip 2002; Kisseberth & Odden 2003; Hyman 2009). For example, 
in languages like Somali or Arusa (see more below), a sequence of H tones is banned in certain 
domains, regardless of the distance between them (see Hyman 2009 for a survey of examples). 
To use the above example, both (2b) and (2b) would be ungrammatical in Somali. A long-
distance Obligatory Contour Principle-style constraint could ban any sequence of H tones 
regardless of adjacency. However, this is clearly not local in the above-defined computational 
conception—at least over surface strings. The challenge is then to capture these long-distance 
processes, but in a restrictive way. This has been the goal of using ARs to reconceive of long-
distance processes as local ones.

Indeed, the computational study of phonotactics has adapted autosegmental concepts to do 
exactly this. Recent work has shown the utility of tier projections (Heinz et al. 2011; McMullin 
& Hansson 2016) and ARs (Jardine 2017; 2019; 2020) in capturing long-distance patterns with 
grammars that are local in this way. For example, the constraint in (2a) can be reformulated 
over ARs as a constraint over two H tones adjacent on the tonal tier, as in (3a); this is violated 
both by adjacent H-toned tone bearing units (TBUs), as in (3b), or H tones that are associated 
to non-adjacent TBUs (3c). This is because both contain the forbidden HH sequence on the tonal 
tier. In this way, ARs capture long-distance phonotactic patterns with local constraints.

(3) a. *HH

b. H H

σ σ σ σ σ σ

c. H H

σ σ σ σ σ σ

A largely unanswered question, however, is how these results can be extended to a local 
characterization of phonological processes, which can be studied computationally by modeling 
them as functions. Tonal processes are a particularly apt testing ground for this, as tone 
exhibits a vast range of both local and non-local processes (Yip 2002; Hyman 2009). As a first 
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step, Chandlee & Jardine (2019a) propose the autosegmental input strictly local (A-ISL) class 
of functions that transform underlying ARs to surface ARs, based on Chandlee (2014)’s input 
strictly local (ISL) functions for strings. Both ISL and A-ISL formalize a notion of locality in 
which any change is based on information in the input that is within some fixed distance of that 
change. The difference is only that with ISL that input is a string and with A-ISL that input is 
an AR.

This paper expands on the results of Chandlee & Jardine (2019a) to lay the foundation for a more 
comprehensive computational theory of tone. In particular, we first introduce a corresponding 
output-based notion of locality over ARs that parallels A-ISL. We call this class of functions 
the autosegmental recursive strictly local (A-RSL) functions and define them using a logical 
characterization of output locality inspired by the output strictly local (OSL) functions for 
strings defined by Chandlee et al. (2015a). We show how this class of functions captures those 
tone processes that cannot be captured by ISL or A-ISL because their computation is necessarily 
output-oriented. From there we establish a four-way distinction of locality in tone processes, 
along the dimensions of strings versus ARs and input- versus output-based computation: 1) 
input-local over strings, 2) input-local over ARs, 3) output-local over strings, and 4) output-
local over ARs.

Next we apply these four categories to a series of tone processes, which includes bounded 
and unbounded tone spread and tone shift, as well as several variants of Meeussen’s rule, 
establishing for each which categories it does and does not belong to. The results show that all 
four categories have utility in accommodating the range of attested tone processes (i.e., no one 
category subsumes the other). At the same time, it is not evident from this survey alone that 
all four categories play distinct roles in the phonological grammar, as some processes can be 
equally modeled with multiple categories, and the question of which category offers the ‘best’ 
characterization is a matter of debate.

These results have larger implications for our understanding of tone in particular and the 
phonological grammar more broadly in the following two ways. One, we are constructing a 
computational theory of tone, one grounded in locality and its interaction with representation. 
The analysis of tone processes in isolation suggests that in such a theory the phonological 
grammar has more than one option for asserting locality.1 However, identifying which of the 
available options are both necessary and sufficient requires a broader exploration into the 
larger typology of tone processes and their interaction with other aspects of the phonological 
grammar. Given that, our computational theory of tone is necessarily incomplete for now, but 
our results point to the hypotheses and predictions that will get us there.

Two, regardless of one’s theoretical orientation, the computational framework provided here 
for investigating tone offers a means of comparing competing analyses of a process that differ 
in representational assumptions or classification as local or non-local. In other words, it offers 
a way of identifying the computational cost of differing assumptions as well as the (non)
exceptionality of a given process in relation to others. We will see examples of this in our 
survey.

1.1 Overview of the proposal

To briefly demonstrate the computational framework used in this paper, consider the process 
of unbounded tone shift in Zigula (Kenstowicz & Kisseberth 1990), in which an underlying H 
tone shifts to the penultimate TBU in the word regardless of how many TBUs intervene between 
those two positions.

(4) Zigula (Niger-Congo; Kenstowicz & Kisseberth 1990)
a. /ku-songoloz-a/ [ku-songoloz-a] ‘to avoid’
b. /á-songoloz-a/ [a-songolóz-a] ‘he/she is avoiding’
c. /ku-lómbez-a/ [ku-lombéz-a] ‘to ask’
d. /ku-lómbez-ez-an-a/ [ku-lombez-ez-án-a] ‘to ask for each other’

1 We analyze processes in isolation in order to focus on the interaction of locality and representation, but this 
computational framework is not limited to single-process analyses. In Appendix A we demonstrate its broader 
utility with a unified analysis of multiple related processes in Shona.
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In (5) we show this shift for example (4b).

(5) # H #

# σ σ σ σ σ #
�→ # H #

# σ σ σ σ σ #

We here present a brief analysis of Zigula tone shift as an A-ISL function, with a more detailed 
presentation of the framework to follow in the next section. Following Chandlee & Jardine 
(2019a), we define A-ISL using quantifier-free (QF) logical transductions. QF transductions 
reference input representations using a predicate logic in which variables range over elements 
(or positions) in the representation—but quantifiers are disallowed. For example, we can 
establish which tones and TBUs should be associated to each other in the output structure using 
the logical formula in (6). This formula defines the associations that hold between tones and 
TBUs in the output structure.

(6) Ao(x , y)
def
= H(x)∧#(s(x))∧σ(y)∧#(s(s(y)))

The conditions for association specified by this formula are broken down below. (Note that s is 
the successor function that establishes the linear order of positions.)

Ao(x , y)
def
= an output position y should be associated to an output position x iff

H(x)∧ x is a high tone, and …
σ(y)∧ y is a TBU, and …
#(s(x))∧ the tone x is one position from the end of the tonal tier, and …
#(s(s(y))) the TBU y is two positions away from the end of the TBU tier

This configuration is depicted visually as a graph in (7), with the positions of the structure 
depicted as nodes (circles), and the successor function depicted as edges (arrows) between the 
nodes. The target nodes x and y that will be associated are also labeled.

(7) H #

σ #
x

y

The right-hand side of a formula such as (6) then identifies those positions in the input structure 
that satisfy certain conditions. The left-hand side asserts that the output correspondents of such 
positions are associated. This is shown in the examples in (8), in which boxes highlight the 
positions that satisfy the formula and their output correspondents.

(8) # H #

# σ σ σ σ σ #
�→ # H #

# σ σ σ σ σ #

The significance of the formula being quantifier-free (QF) is that global information that would 
require scanning the entire input (e.g., ‘there exists a position such that…’) is not available. 
Rather, the formula is limited to examining a fixed window of material around a particular 
position. In this way the transduction is required to operate in a local manner. As we show, 
the fact that A-ISL captures processes that would otherwise not be amenable to a local analysis 
confirms, from a formal perspective, that the power of ARs comes from the asynchronicity of 
distinct tiers and the manipulation of the association relation between them.

However, as already noted, the A-ISL class cannot capture processes that require output locality, 
or reference to the output structure in the right-hand side of the formula. To address this gap, 
we will propose a corresponding class of functions we call A-RSL (autosegmental recursive 
strictly local).2 Collectively our results indicate that preserving locality in the domain of tone 
processes requires both options for representation (strings and ARs)3 and both types of locality 
(input and output).

2 We have opted to not call this class A-OSL because we do not yet have a mathematical proof that it 
subsumes the existing class of OSL functions.

3 An anonymous reviewer points out that this is also true in some cases in syntax, where some constraints 
can be simplified when stated over strings instead of trees. For example, the that-trace effect can be reduced 
to a simple constraint against the substring that-t, but over trees it becomes less straightforward. We thank the 
reviewer for pointing out this interesting connection between the two domains.
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The remainder of the paper is as follows. §2 details the use of logical transductions to model 
phonological processes and defines the two types of locality, input locality in §2.1 and output 
locality in §2.2. In §3 we use this framework in analyses of several types of tone processes, 
including bounded and unbounded tone shift and tone spread in §3.1 and variants of Meeussens’s 
rule in §3.2. In §4 we compare these computational notions of locality to previous ones in 
theoretical phonology, and also discuss the implications of our results for a more comprehensive 
computational theory of tone processes. §5 then concludes.

2 Input and output locality
2.1 Input locality

The first function class we will make use of in our analyses is the input strictly local (ISL) 
functions, which are functions that determine an output string for a given input string based only 
on input substrings of bounded length (Chandlee 2014; Chandlee et al. 2014).4 As schematized 
in Figure 1, in an ISL function each element of an input string contributes some (possibly empty) 
substring to the output, and the content of that substring is based only on the input element 
itself and the k-1 surrounding input elements. The integer k then serves as an upper bound on 
how much of the input string can be used to determine the output.

The property of being ISL then provides a precise and computational notion of what it means 
for a phonological process to be local. One goal for this paper is to assess how well this formal 
conception of locality aligns with the sense in which autosegmental representations enable a 
local treatment of otherwise non-local phenomena. In pursuit of this goal we will use logical 
characterizations of functions, which enable a more direct comparison among different 
representations (in our case strings versus ARs) compared to previous automata-theoretic 
characterizations.

Consider a process in which a tone shifts some fixed number of TBUs away from its underlying 
position. For example, in Rimi, a tone shifts one TBU to the right, as shown in (9). For 
convenience these examples are rewritten as strings of TBUs in (10). (More will be said about 
this representational choice in §3.)

(9) Rimi (Niger-Congo; Schadeberg 1979; Myers 1997)
a. /u-hang-a/ [u-hang-a] ‘to meet’
b. /u-pú̧m-a/ [u-pu̧m-á] ‘to go away’
c. /mu-ntu/ [mu-ntu] ‘person’
d. /rá-mu-ntu/ [ra-mú-ntu] ‘of a person’
e. /u-huvi-i/̧ [u-huvi-i]̧ ‘belief’
f. /mu-tém-i/̧ [mu-tem-í] ‘chief’

(10) a. σσσ ⟼ σσσ
b. σσ́σ ⟼ σσσ́
c. σσ ⟼ σσ
d. σ́σσ ⟼ σσ́σ
e. σσσ ⟼ σσσ
f. σσ́σ ⟼ σσσ́

The logical characterization of ISL defines formulas in first order (FO) logic that pick out input 
elements that meet certain conditions. For example, the formulas σ́(x) identifies input elements 
that bear a high tone. We can also use terms like p(x), or predecessor of x, and s(x), or successor 
of x, to refer to elements immediately preceding or following x, respectively.

4 While Chandlee (2014) defines strictly local functions in the context of phonological processes, local 
functions themselves have precedent (see Berstel 1982; Vaysse 1986; Lind & Marcus 1995).

Figure 1 Computing an 
ISL function. Here, τ is an 
arbitrary input element; τ′ 
is its output. The shaded 
portion of the input is the 
information available to the 
function when determining τ′.

�1 ... �i−1 τ �i+1 ... �k

τ′
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A map or transduction from an input to output string involves defining output predicates that 
determine the content of the positions in the output string. Throughout the paper we distinguish 
these output predicates with a subscript o. For example, (11a) specifies the conditions for an 
output position to bear a high tone.

(11) Bounded shift (ISL) (part 1)
a. σ́o(x) = σ́(p(x))

b. σ́
x

(11a) says that an output element x should bear a high tone if its predecessor p(x) in the input 
bears a high tone. To illustrate, (12) highlights in boxes those TBUs from (10a), (10b), and 
(10d) that satisfy (11a) and thus whose output correspondents will be σ́.

(12) a. σσσ
b. σσ́σ

c. σ́σσ

Likewise, (13a) identifies those output elements that are unspecified for tone: namely, those 
elements whose predecessors in the input do not bear a high tone. This formula is satisfied by 
all of the TBUs in (12) that are not in boxes.

(13) Bounded shift (ISL) (part 2)
a. σo(x) = ¬σ́(p(x))

b. σ́
x

A complete definition of a logical transduction includes output predicates for all possible output 
labels (and in the case of ARs also the association relation). In the interest of space our analyses 
will only provide output predicates for those aspects of the representation that actually change 
from input to output. All others can be assumed to be defined to retain their value from the 
input (e.g., ao(x)

def
= a(x)). Finally, note also that as logical definitions define an output structure 

based on the set of output predicates that evaluate to true, they are guaranteed to define 
functions, such that no input is mapped to more than one output form (though they can be 
extended to deal with optionality; see Engelfriet & Hoogeboom 2001).

As noted in the introduction, the transduction is forced to operate in a local way because all of 
the formulas are quantifier-free (QF). The only means of accessing information is through the 
use of the successor and/or predecessor functions. Calls to these functions can be embedded, 
such as p(p(x)) to identify the predecessor of a predecessor, but the degree of embedding will 
be finite.

Chandlee & Jardine (2019b) show that these transductions describe exactly the ISL functions, 
provided they are order-preserving, meaning that a position that precedes/follows another 
position in the input will also precede/follow that position in the output.5 We follow this 
assumption throughout the paper.

It follows then that the ISL functions provide a means of formally distinguishing local from 
long-distance processes. Consider the example of long-distance consonant agreement found in 
Kikongo, in which the suffix -idi surfaces as -ini when it attaches to a stem that contains a nasal 
consonant.

(14) Kikongo (Niger-Congo; Ao 1991)
/tu-nik-idi/ [tunikini] ‘we ground’

In terms of the FO characterization used in this paper, a formula that determines the nasality 
of the suffix consonant would require a quantifier to examine the entire stem. The use of 
embedded predecessor functions is not possible, as there is no upper bound on how many 
preceding segments must be examined to confirm the presence or absence of a stem nasal.

5 This might give the impression that we are ruling out metathesis, which is in fact ISL (when local) (see 
Chandlee 2014). But there is a crucial difference between preserving the order of the positions and preserving the 
order of the position labels. We are only ruling out the former. We thank an anonymous reviewer for pointing out 
this important distinction.
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This formal means of distinguishing local from long-distance enables a similarly formal means 
of investigating how long-distance patterns are made local by ARs. We first must extend ISL to 
operate over ARs instead of strings. ARs consist of two strings (one of tones and one of TBUs), 
each with their own predecessor and successor functions.6 In addition, an association relation 
A defines which tones are linked to which TBUs. The formulas that define transductions over 
ARs can refer to positions on either string or the associations between them. We assume that the 
input to these transductions are well-formed ARs. That is, tones and TBUs appear on separate 
tiers, all associations occur between a tone and a TBU, and all associations obey the no-crossing 
constraint (for a recent formal overview, see Jardine 2016b).

In the case of Rimi, the transduction involves a change in the association relation, specified by 
(15a). This formula says that a TBU y is associated to a tone x in the output if x was associated 
to y’s predecessor in the input.

(15) Bounded shift (A-ISL)
a. Ao(x , y)

def
= A(x , p(y))

b.
x

y

The example in (16) demonstrates how this formula implements the tone shift. In this example, 
Ao(x,y) is only true when x is interpreted as the H and y as syllable 2, and so these two positions 
(and no others) are associated in the output.7

(16) H

σ
1
σ
2
σ
3

�→ H

σ
1
σ
2
σ
3

A function such as this one we call A-ISL, to reflect the fact that it operates over ARs instead of 
strings. Both ISL and A-ISL require the formulas to be QF; they differ only in representations.

As is shown in the analyses below, however, the tier structure of ARs allows for some processes 
that operate over an arbitrary number of TBUs (and thus are not ISL) to be captured with QF 
formulas (and thus are A-ISL). To give a hypothetical example, imagine a Meeussen’s Rule-type 
process in which an H becomes L following another H, regardless of the number of intervening 
TBUs.

(17) a. σσσσ́σ ⟼ σσσσ́σ
b. σσσ́σ́σ ⟼ σσσ́σ̀σ
c. σ́σσσ́σ ⟼ σ́σσσ̀σ

This process is not ISL for the same reason that Kikongo nasal agreement isn’t: determining 
whether or not an underlying /σ́/ surfaces as [σ̀] requires a quantifier to examine the entire 
string, as a triggering σ́ can be arbitrarily far away. However, this process is A-ISL, as the two 
H tones will be adjacent on the tonal tier, as shown in (18).

(18) a. H

σ σ σ σ σ

�→ H

σ σ σ σ σ

b. H H

σ σ σ σ σ

�→ H L

σ σ σ σ σ

c. H H

σ σ σ σ σ

�→ H L

σ σ σ σ σ

6 We only consider ARs with two strings, leaving the analysis of ARs with more than two strings to future 
work.

7 Throughout the paper, we use dashed association lines to indicate associations that satisfy the output 
association formula.
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This process is described exactly by the QF definition for an output L given in (19a).

(19) Long-distance Meeussen’s rule (A-ISL)

a. Lo(x)
def
= H(p(x))

b. H
x

However, note that this analysis depends on the assumption of a privative H/∅ system. If, for 
example, there could be any number of intervening M tones, as in (20), the triggering H would 
no longer be within a fixed distance of the target H.8

(20) Non-A-ISL version of long-distance Meeussen’s rule
H M M H

σ σ σ σ σ

�→ H M M L

σ σ σ σ σ

Such a map is not A-ISL for the same reason that (17) is not ISL: on the tone tier the first H can 
be arbitrarily far away from the second, and so there is no finite QF statement that can identify 
the triggering environment. Thus the representational assumptions that affect computational 
classification go beyond the choice of string versus AR. We will see more cases like this in the 
analyses presented in §3.

This example also highlights the limits to the expressive power of A-ISL. First, the map on each 
tier must be an ISL map. Notice in (18) that this process is essentially changing HH sequences 
to HL sequences, with everything else staying the same. The representation then isolates 
the otherwise long-distance process to an ISL function on the tone tier. Chandlee & Jardine 
formalize this in the following theorem.

(21) Theorem. If an AR map is A-ISL, then the individual map on each tier is ISL.
(Chandlee & Jardine 2019a: Thm 1)

A consequence of this theorem is that any modifications on the tonal tier are independent 
of any changes to the association relation. This means those processes for which a change 
in tone depends on information on both tiers are not A-ISL (though they may still be ISL, 
as we will see). In addition, given the way ISL and A-ISL are defined, they can only refer to 
input information. The results of Chandlee & Jardine (2019a), however, reveal cases of tone 
processes where this limitation is problematic, and for which a comparable notion of output 
locality is needed.

2.2 Output locality

In this section we propose two additional function classes that can reference output structure, 
one for strings and one for ARs. The function class for strings is based on the output strictly 
local (OSL) functions defined by Chandlee (2014) and Chandlee et al. (2015b), which 
provide a similar notion of locality as ISL, but in terms of the output string. As schematized 
in Figure 2, with OSL functions there is some k such that, for any position in the string, its 
output is based on the previous k-1 elements in the output. (The kth element is the current 
input position.)

For example, consider a process that spreads a high tone to the end of the string, as in the rule 
in (22), applied iteratively.

(22) σ → σ́ / σ́ ___

8 We thank an anonymous reviewer for pointing this out.

Figure 2 Computing an 
OSL function. Here, τ is an 
arbitrary input element; τ′ 
is its output. The sequence 
ℓ1,ℓ2,…,ℓk–1 is the information 
available to the function when 
determining τ′.

τ

�1 ... �k−1 τ
′
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Two example mappings for this rule are shown in (23).

(23) a. / σ́σσσσσσ /
[ σ́ σ́ σ́ σ́ σ́ σ́ σ́ ]

b. / σσσσσσσ /
[ σσσσσσσ ]

Examples (23a) and (23b) contrast two input σ’s (highlighted in boxes) one of which is output 
as σ́ and one of which must remain σ. The surrounding environment of both σ’s in the input 
string is identical; it is the preceding item in the output string that differentiates them.9 This is 
what makes the process OSL instead of ISL.

The OSL functions have been defined in terms of formal language theory and finite-state automata, 
but no logical characterization currently exists. We instead propose a logical characterization 
of two function classes we are calling recursive strictly local (RSL) and autosegmental recursive 
strictly local (A-RSL), for reasons that will become apparent in a moment.

Following Koser et al. (2019) and Chandlee & Jardine (2019b), our definitions of RSL and 
A-RSL invoke the notion of least-fixed point (LFP) logics, which allow for recursive definitions 
of the logical formulas that make up the transductions. The full notation of LFP is technical, 
so we use implicit definitions (cf. Rogers 1998), that is, definitions that are explicitly recursive. 
For example, the process represented in (22) can be achieved with the formula in (24a) that 
identifies which output positions receive a high tone. (In the diagram we use σ́o to denote the 
property of satisfying σ́o(x).)

(24) Unbounded spreading

a. σ́o(x)
def
= σ́(x)∨ σ́o(p(x))

b. σ́
x
or σ́o

x

Notice that this formula is recursive, in that it references itself in the second disjunct. The first 
disjunct then starts the recursion with any underlying high tone, which will remain high in 
the output. The second disjunct then checks the output label of a given position’s predecessor, 
likewise taking on a high tone if the predecessor bears one in the output.

Over ARs instead of strings, unbounded spreading can be achieved using recursion in the output 
association relation, as in (25a). An example map is given in (26).

(25) Unbounded spreading

a. Ao(x , y)
def
= A(x , y)︸ ︷︷ ︸

b.
∨ �Ao(x , p(y))
�

︸ ︷︷ ︸
c.

d.
x

y

(=b) or x

y

(=c)

(26) H

σ σ σ σ

H

σ σ σ σ

H

σ σ σ σ

H

σ σ σ σ

H

σ σ σ σ

Input (25b) (25c) (25c) (25c)

In (26), the H and the initial syllable are associated in the input; thus, they satisfy the first 
disjunct (25b) and remain associated in the output. Because the initial syllable is the predecessor 
of the second syllable, the H and the second syllable satisfy the recursive disjunct (25c), and 

9 Obviously if we look far enough back in the input string we will identify a σ́ in example (23a) but not in 
(23b). But of course the unbounded nature of the process means we can never be certain of how far back we will 
have to look, and so we can’t prespecify the size of the shaded region.

https://doi.org/10.5334/gjgl.1423
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so the second syllable is also associated to H in the output. And likewise for the remaining 
syllables. In this way, the recursive nature of the definition captures the iterative addition of 
association lines.

This use of recursion is the crucial difference between RSL and ISL, since the latter cannot use 
recursive formulas. Recursion is, however, a powerful mechanism, and so its use must be limited 
in order to maintain the restrictiveness that locality provides.10 However, recursive logical 
definitions—when limited to a QF FO language—can be restricted to a level of expressivity that 
is appropriate for phonological processes (Bhaskar et al. 2020). Our proposed definition of RSL 
and A-RSL then are QF FO logical transductions over strings and ARs, respectively, that satisfy 
the following conditions:

(27) a. The transduction includes either formulas that use only p or formulas that use 
only s (i.e., p and s cannot be combined either in a single formula or across the 
set of formulas that make up the transduction).

b. Whenever a formula uses p or s it does so in a recursive predicate.

These conditions reflect the formal properties of the OSL functions in order to guarantee a 
similar degree of computational restrictiveness. We conjecture that the RSL functions will turn 
out to be the logical characterization of the OSL functions, though we leave a proof for future 
work.11

The reason for condition (27a) is that output locality (as defined by OSL functions) is necessarily 
directional. Given a formalism such as finite-state machines, for example, a different output 
string could be produced depending on whether the function reads the input string from left-
to-right or right-to-left.12 In our logical characterization, transductions that use only p simulate 
reading a string from left-to-right, and those that use only s simulate reading a string from right-
to-left. It should be noted that the restriction in (27a) also excludes long-distance bidirectional 
processes, such as those discussed in Jardine (2016a). We bring this up again in §4.

The reason for condition (27b) is to limit the formula to only reference the input structure for 
the current position (i.e., x itself). Any other information it makes use of must be found in the 
output structure instead, as schematized in Figure 2.

2.3 Autosegmental locality

Using these notions of input and output locality for string and AR maps, in the remainder of the 
paper we will survey a set of tone processes. We will classify these processes as ISL, A-ISL, RSL, 
and/or A-RSL, according to (28).

(28) a. A process is ISL if it can be modeled as a non-recursive QF FO logical transduction 
over string representations.

b. A process is A-ISL if it can be modeled as a non-recursive QF FO logical 
transduction over ARs.

c. A process is RSL if it can be modeled as a QF FO logical transduction that 
satisfies the conditions in (27) over string representations.

d. A process is A-RSL if it can be modeled as a QF FO logical transduction that 
satisfies the conditions in (27) over ARs.

The results of the survey will demonstrate the extent to which these notions of locality overlap 
and the extent to which they distinguish different tone processes in terms of the computations 
they require. Furthermore they will reveal the various mechanisms by which ARs render non-
local processes local, as well as the factors that can prevent them from doing so.

10 For a more comprehensive explanation of the desirability of computational restrictiveness in phonology 
readers are referred to Chandlee & Heinz (2018).

11 There is a third condition, which is not relevant to any of the examples analyzed in this paper and is 
technically involved, and so we omit it in the interest of clarity and for space limitations. Essentially though it 
serves to prohibit long-distance agreement, which can be enacted using least-fixed point logic via a type of covert 
‘markup’. See Chandlee & Jardine (2019b) for an example. As long-distance agreement is beyond the reach of the 
OSL functions, this ability of least-fixed point logic must be curbed in the logical characterization of OSL.

12 This is not the case with ISL functions; when referencing only input the same output string will result 
regardless of direction. Hence the logical characterization of ISL is free to combine p and s in its formulas. 
Readers are referred to Chandlee (2014) for more on this difference between input and output locality.
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3 Survey of tone processes
In this section we present analyses of a range of tone processes using the logical notions of 
locality defined in the previous section. For each process, we first analyze it assuming a string 
representation, and then again assuming an AR. Our string representations will be strings of 
TBUs, by default strings of syllables (e.g., σσσ) rather than strings of segments. One might 
question whether this representational choice hides some of the process’s computational 
complexity in the prior omitted step of parsing. But again, our goal is to isolate the process in 
order to assess its relative complexity in the domain under investigation (i.e., tone), and it is 
common practice to assume tone processes operate over TBUs instead of segments. In addition, 
given that the number of consonants that will appear between syllable nuclei is in fact bounded 
by the language’s phonotactic constraints, the complexity of parsing is not in fact believed 
to be that high.13 Nonetheless, we acknowledge that an investigation into the computational 
complexity of various mechanisms for syllable parsing would not only be useful but may have 
implications for the results presented in this paper.

In addition, to simplify the diagrams, in the representations to follow (both strings and ARs) we 
will only include the word boundary symbols (#) when they are directly relevant to the pattern 
in question. This means that we largely abstract away from the question of which prosodic 
boundaries delineate the domain of the process. As a reviewer points out, this is an important 
consideration in tone, in particular as the often phrasal nature of tone poses a challenge for 
many theories of phonology (Sande et al. 2020). This paper does not attempt to wade into this 
complex problem, in the service of focusing on the basic distinction between local and non-
local processes. It should be said, however, that model theory and logic can provide a flexible 
way of representing morphological and prosodic information and processes; interested readers 
are referred to Dolatian (2020).

Lastly, we would like to emphasize that in those cases where a process is amenable to more 
than one analysis (e.g., input and/or output local over strings and/or ARs), we will not be 
making an argument for which of those options is the best characterization. Identifying the 
‘best’ analysis of any of the patterns presented here is not the goal. Rather it is to establish 
which computational properties the process does and does not have, in order to address 
the larger question of how representation interacts with these computational notions of 
locality.

The set of processes we analyze and their classifications are previewed in Table 1. We begin in 
§3.1 with bounded and unbounded tone spread and shift.

3.1 Spread and shift

In bounded spread, an underlying tone spreads some fixed number of TBUs and no further. 
In Northern Bemba an H tone spreads exactly one TBU to the right; this is also referred to as 
‘binary tone spread’ or ‘tone doubling’ (Bickmore & Kula 2013).

13 Readers are referred to Strother-Garcia (2019) for more on the computational complexity of syllable 
representations and parsing.

PROCESS ISL A-ISL RSL A-RSL

Bounded spread (Bemba)    

Bounded shift (Kuki-Thaadow)    

Unbounded shift to penult (Zigula)    

Unbounded spread to penult (Shambaa)    

Unbounded Meeussen’s, deletion (Arusa)    

Bounded Meeussen’s, lowering (Luganda)    

Alternating Meeussen’s, lowering (Shona)    

Table 1 Summary of analyses.
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(29) Northern Bemba (Niger-Congo; Bickmore & Kula 2013)
a. /tu-la-kak-a/ [tu-la-kak-a] ‘we tie up’
b. /bá-la-kak-a/ [bá-lá-kak-a] ‘they tie up’
c. /bá-ka-fik-a/ [bá-ká-fik-a] ‘they will arrive’
d. /bá-ka-bil-a/ [bá-ká-bil-a] ‘they will sew’

This process is intuitively local, and indeed it is ISL. A QF formula is given in (30a), with an 
example mapping given in (31).

(30) Bounded spread (ISL)

a. σ́o(x)
def
= σ́(x)∨ σ́(p(x))

b. σ́
x
or σ́

x

(31) σ́σσσ ⟼ σ́σ́σσ

The first disjunct of (30a) (σ́(x)) identifies a syllable that is high in the input, such as the first 
syllable of (31). The second disjunct (σ́(p(x))) identifies a syllable whose predecessor in the 
input is high, such as the second syllable. Both of these syllables then have a high tone in the 
output, achieving the effect of binary tone spread. The formula is QF and non-recursive; thus, 
bounded spread is ISL.

With an AR, the spreading rule corresponds to the definition in (32a), which reads as follows: 
x and y are associated in the output if and only if (32b) x and y are associated in the input; or 
(32c) x and the predecessor of y are associated in the input.14 How this formula describes the 
mapping is illustrated with an example in Figure 3.

(32) a. Ao(x , y)
def
= A(x , y)︸ ︷︷ ︸

b.
∨A(x , p(y))︸ ︷︷ ︸

c.
d.

x

y

(=b) or x

y

(=c)

In Figure 3, syllable 1 is associated to the H in the input, and so these positions satisfy the first 
disjunct A(x,y) and are also associated in the output. Additionally, as the H is associated to the 
predecessor of syllable 2 (namely, syllable 1), the H and syllable 2 satisfy the second disjunct 
A(x,p(y)) and so are also associated in the output. As the H and syllable 3 satisfy neither 
disjunct, they are not associated in the output.

Like (30a), the formula in (32a) is both QF and non-recursive. Bounded spreading is thus 
both ISL and A-ISL. Note that this analysis assumes underlying TBUs are either high-toned or 
unspecified. But the classification as ISL and A-ISL does not depend on this assumption. If for 
example the language instead had a H/L contrast, we would simply include a formula that 

14 Ternary spread (as in Copperbelt Bemba) is also ISL and A-ISL, as witnessed by the following formulas:

(i) σ́o(x)
def
= σ́(x)∨ σ́(p(x))∨ σ́(p(p(x)))

(ii) Ao(x , y)
def
= A(x , y)∨ A(x , p(y))∨ A(x , p(p(y)))

These are simply the formulas in (30a) and (32a) with additional disjuncts for the syllable two syllables away. 
This analysis of ternary spread demonstrates how our notion of locality is not the same as the prior notion of 
‘don’t count past two’. What makes a pattern local is not that it involves a window of size 2, it’s that an upper 
bound exists on the length of that window. For Copperbelt Bemba that length is 3. Formally, we’d say that 
Copperbelt Bemba’s pattern is a 3-ISL or 3-A-ISL function, while Northern Bemba’s is 2-ISL or 2-A-ISL.

Figure 3 Bounded spread 
formula in (32a) applied to an 
AR with three syllables.

σ σ σ

�→

σ σ σ
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specifies output TBUs as L-toned if they are L-toned in the input and their predecessors are 
not H-toned (similar to the analysis of Rimi in §2.1). Likewise in the AR analysis, the output 
association formula in (32a) would be expanded to make sure only high tones are spread. 
So while the analysis itself might look different depending on what tones are assumed to be 
present underlyingly, the result of the analysis is the same: ISL and A-ISL.

In the remainder of the section we will continue to follow the representational assumptions 
of the original cited analyses in those cases where the classification does not depend on those 
assumptions. In those cases where the classification is representation-dependent, however, we 
will make note of that fact.

As for output locality, bounded spread is in fact necessarily ISL, not RSL. This is because it 
requires keeping track of how far the spreading has gone, which in turn requires examining 
the input. Once the formula references the output structure the spreading will be necessarily 
unbounded, as the underlying trigger can no longer be distinguished from its targets. For similar 
reasons the process is also not A-RSL.

We now turn to bounded shift. An example is found in Kuki-Thaadow, in which a string of 
tones each associate to the following syllable, as in (33). The first and last tones also remain 
associated to their underlying TBUs.

(33) Kuki-Thaadow (Tibeto-Burman; Hyman 2011)
a. /kà zóoŋ lien thúm/ [kà zòoŋ lien thǔm] ‘my three big monkeys’
b. #σ̀σ́σ̀σ́# ⟼ #σ̀σ̀σ́σ̌#

As a map over strings, we need four formulas, one for each possible output tone. Output 
positions that bear a low tone satisfy the formula in (34a), which identifies two scenarios. One, 
the TBU is the first TBU and is underlyingly low (i.e., σ̀(x) ∧ #(p(x))). Two, the TBU is not 
the last TBU and its input predecessor is low (i.e., σ̀(p(x)) ∧ ¬#(s(x))). This captures the shift, 
excluding final TBUs which instead bear a contour tone.

(34) Bounded shift in Kuki-Thaadow (ISL) (part 1)

a. σ̀o(x)
def
= (σ̀(x)∧#(p(x)))∨ (σ̀(p(x))∧¬#(s(x)))

b. # σ̀
x
or σ̀ ¬#

x

The parallel formula in (35a) designates those TBUs that bear a high tone in the output.

(35) Bounded shift in Kuki-Thaadow (ISL) (part 2)

a. σ́o(x)
def
= (σ́(x)∧#(p(x)))∨ (σ́(p(x))∧¬#(s(x)))

b. # σ́
x
or σ́ ¬#

x

The contour tones are handled by (36a) and (36c). (36a) says that a TBU bears a LH contour if 
it is the last TBU (#(s(x))), has a high tone in the input (σ́(x)), and its input predecessor has a 
low tone (σ̀(p(x))). Similarly, (36c) designates output TBUs that bear a HL contour.

(36) Bounded shift in Kuki-Thaadow (ISL) (part 3)

a. σ̌o(x)
def
= #(s(x))∧ σ́(x)∧ σ̀(p(x))

b. σ̀ σ́ #
x

c. σ̂o(x)
def
= #(s(x))∧ σ̀(x)∧ σ́(p(x))

d. σ́ σ̀ #
x

Collectively these formulas establish the map as ISL. It is also A-ISL. An AR map for the example 
in (33) is shown in (37), and the formula defining it is given in (38a).

(37) # L H L H #

# σ σ σ σ #

�→ # L H L H #

# σ σ σ σ #
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(38) Bounded shift in Kuki-Thaadow (A-ISL)

a. Ao(x , y)
def
=
�
(#(p(y))∨#(s(y)))∧ A(x , y)

�∨ A(x , p(y))

b.

#
x

y

or
#

x

y

or x

y

Informally, (38a) says that a tone x and a TBU y should be associated in the output if at least 
one of the following holds: 1) they are associated in the input and y is either the first or last 
TBU, or 2) x is associated to y’s predecessor in the input.

Bounded shift then satisfies both of our notions of input locality. It does not, however, satisfy 
the corresponding notions of output locality. The condition on RSL/A-RSL formulas in (27b) 
forces them to look back to the output predecessor, but they need to see the input predecessor 
to determine which tone it bears. In addition, the formulas in (36) and (38a) violate condition 
(27a), as they reference both s and p. This is necessary for the specific version of shift found 
in Kuki-Thaadow in order to preserve the underlying tones on the first and last TBUs. Even 
without this added factor, though, the pattern is still not A-RSL for the reasons explained 
above.

We now turn to unbounded tone shift and spread. We already saw a case of unbounded shift 
in §1.1: in Zigula (Kenstowicz & Kisseberth 1990) an H shifts to the penultimate TBU. The 
examples in (4) are repeated in (39).

(39) Zigula (Niger-Congo; Kenstowicz & Kisseberth 1990)
a. /ku-songoloz-a/ [ku-songoloz-a] ‘to avoid’
b. /á-songoloz-a/ [a-songolóz-a] ‘he/she is avoiding’
c. /ku-lómbez-a/ [ku-lombéz-a] ‘to ask’
d. /ku-lómbez-ez-a/ [ku-lombez-éz-a] ‘to ask for’
e. /ku-lómbez-ez-an-a/ [ku-lombez-ez-án-a] ‘to ask for each other’

Not surprisingly, this map is not ISL. To see why, consider the contrast between the penultimate 
syllable in an underlyingly toneless word (40a) and toned words (40b).

(40) a. σσσσσ ⟼ σσσσσ
b. σσσ́σσ ⟼ σσσσ́σ

σ́σσσσ ⟼ σσσσ́σ

To correctly place the high tone in the output we need a formula that is false for the penult in 
(40a) but true for the penults in (40b). But without a quantifier, this formula must rely on a 
finite sequence σ́(p(x)) ∨ σ́(p(p(x))) ∨ σ́(p(p(p(x)))) ∨ … that covers all possible distances from 
x, and this is not possible with unbounded phenomena.

With ARs, unbounded shift has been derived multiple ways, often by decomposing it into two 
steps such as spreading and delinking (see, for example, Kenstowicz & Kisseberth 1990; Odden 
2001). Our analysis treats unbounded shift as a single function that directly associates the final 
H to the penultimate syllable.15 The output association function defined in (6) and repeated in 
(41a) associates x and y in the output if and only if x is the final tone and y is the penultimate 
syllable. This shifts the association of the final H will to the penult, regardless of where it was 
associated in the input. An example is given in (42).

(41) Unbounded shift (A-ISL)

a. Ao(x , y)
def
= H(x)∧#(s(x))∧σ(y)∧#(s(s(y)))

b. H #

σ #
x

y

15 Representing unbounded shift as a one-step process is reminiscent of previous OT analyses (e.g., Bickmore 
1996; Yip 2002), in which an Align constraint pulls the H tone to the right.



15Chandlee and Jardine  
Glossa: a journal of 
general linguistics  
DOI: 10.5334/gjgl.1423

(42) # H #

#
1
σ
2
σ
3
σ
4
σ
5
σ
6

#
7

�→ # H #

#
1
σ
2
σ
3
σ
4
σ
5
σ
6

#
7

Note that (41a) does not depend on there actually being an H in the input. It only dictates that 
an x and y that satisfy it are associated. If no such x and y exist—i.e., if there are no H tones—
then no association takes place. This is how the AR avoids the issue encountered above in the 
ISL analysis, in which a quantifier is needed to scan the string for a σ́ that needs to be shifted.

However, this classification as A-ISL does assume an underlying H/∅ contrast. If an unbounded 
number of other tones (i.e., L or M) can intervene between the final H and the word boundary, 
it would be impossible (without a quantifier) to determine that the H is in fact the last H.

Unbounded shift to penult is not RSL for a similar reason as why it’s not ISL: with a fixed 
window the function can’t distinguish a word with a high tone from a toneless word. In fact 
the situation is even more severe for RSL: the output will never contain a σ́ prior to the penult, 
because it needs to shift and so will have been deleted! It is, however, A-RSL, unlike bounded 
shift. This is because with an AR it does not matter what TBU the H is associated to in the input, 
and so it does not matter that that information is inaccessible in the output. What matters is 
again that the H is the final one, and that information does not change from input to output. 
Again this assumes an underlying H/∅ contrast.

Now consider unbounded spread, in which an underlying H spreads until it is blocked or 
reaches a certain position. In Shambaa (Odden 1982), for example, an H spreads rightward 
until it reaches the penult.

(43) Shambaa (Niger-Congo; Odden 1982)
a. /ku-hand-a/ [ku-hand-a] ‘to plant’
b. /ku-fúmbati∫-a/ [ku-fúmbátí∫-a] ‘to tie securely’
c. /ku-hand-ij-an-a/ [ku-hand-ij-an-a] ‘to plant for each other’
d. /ku-fúmbati∫-ij-an-a/ [ku-fúmbátí∫-íj-án-a] ‘to tie securely for each other’
e. /ku-∫unth-a/ [ku-∫unth-a] ‘to wash’
f. /ku-t∫í-∫unth-a/ [ku-t∫í-∫únth-a] ‘to wash’
g. /ku-ɣo∫o-a-ɣo∫o-a/ [ku-ɣo∫o-a-ɣo∫o-a] ‘to do repeatedly’
h. /ku-t∫í-ɣo∫o-a-ɣo∫o-a/ [ku-t∫í-ɣó∫ó-á-ɣó∫ó-a] ‘to do repeatedly’

Unbounded spread is not ISL, for the same reason that unbounded shift isn’t. Consider the 
penultimate syllables in (44). Whether each surfaces as σ or σ́ depends on a trigger that may be 
any distance to the left, which is not detectable without a quantifier.

(44) a. σσσσσ ⟼ σσσσσ
b. σσ́σσσ ⟼ σσ́σ́σ́σ

σσ́σσσσσ ⟼ σσ́σ́σ́σ́σ́σ

In contrast to unbounded shift, however, unbounded spread to penult is also not A-ISL. The 
need to associate the H to all intervening TBUs between the underlying one and the penult 
means each target will be progressively further away from the underlying trigger. This would 
again require an unbounded number of added disjuncts in the formula (e.g., A(x,p(y)) ∨ A(x, 
p(p(y))) ∨ A(x, p(p(p(y)))), etc.).

It might seem that the answer will be found in output locality, since in §2.2 it was shown 
that unbounded spread to the end of the word is both RSL and A-RSL. However, the version 
of unbounded spread found in Shambaa differs crucially in that the spread must not reach 
the final TBU. This difference is crucial because it means the function needs to look in both 
directions: backwards to see the output of the previous TBU and forwards to check if the current 
TBU is final or not. This violates condition (27a), regardless of whether or not we use ARs. Thus 
we have here a pattern that meets none of our conceptions of locality.

This result for Shambaa does, however, depend on our treatment of unbounded spreading to 
penult as a single map. As noted above and pointed out by an anonymous reviewer, spreading 
processes like that in Shambaa are typically analyzed as two generalizations: unbounded spread 
to the end of the word and something like tone retraction. We could likewise treat the Shambaa 
pattern as the composition of two processes: (A-)RSL spreading to the end of the word followed 
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by a function that removes a word-final H (which is both (A-)ISL and (A-)RSL). We will say 
more about composing processes in §4.

We reiterate here that our goal is not to argue for a particular analysis, nor for a particular 
factoring of generalizations. Rather it is to assess which of our notions of locality each process 
satisfies. The case of Shambaa does, however, exemplify the way in which the computational 
framework advocated for here allows us to identify the computational distinctions among 
competing analyses and sets of assumptions.

3.2 Variants of Meeussen’s rule

Next we consider variants of Meeussen’s rule. First, in Arusa, the last H in a phrase is deleted 
following another H, no matter the distance (Levergood 1987; Odden 1994).

(45) Arusa (Eastern Nilotic; Levergood 1987: 58)
a. /sídáy/ [sídáy] ‘good’
b. /enkér sídáy/ [enkér siday] ‘good chair’
c. /olórika sídáy/ [olórika siday] ‘good ewe’

In (45a), the underlying H’s in /sídáy/ ‘good’ surface faithfully, whereas in (45b) and (45c) they 
are deleted because of the presence of a H in the preceding word.16 This deletion applies at any 
distance: in (45c) the triggering H is two TBUs away from the target.

Not surprisingly, this process is not ISL, for reasons that at this point should be clear. Consider 
the schematic examples in (46). The predicate σ́o(x) cannot detect the presence of the trigger H 
in (46b) and (46c) without a quantifier.

(46) a. σσσσ́ ⟼ σσσσ́
b. σσ́σσ́ ⟼ σσ́σσ
c. σ́σσσ́ ⟼ σ́σσσ

However, it is A-ISL. An example mapping is shown in (47). With logical definitions, ‘deletion’ 
results when an input element does not satisfy any output formula. To capture deletion in 
Arusa, then, we write a formula that is not satisfied by H’s that are both final and preceded by 
another H. This is given in (48a).17

(47) H H

σ σ σ σ σ σ

�→ H

σ σ σ σ σ σ

(48) Unbounded Meeussen’s Rule deletion in Arusa (A-ISL)

a. Ho(x)
def
= H(x)∧¬�H(p(x))∧#(s(x))

�

b. H
x
and not H #

x

This formula is interpreted as follows. The output label of x is H if and only if it satisfies two 
conditions. First, x must be an H in the input (H(x)). Second, if x is the final member of its tier, 
it cannot be preceded by another H (¬(H(p(x)) ∧ #(s(x)))).

Just as with the hypothetical long-distance Meeussen’s lowering rule presented in §2.1, 
however, this classification is dependent on an underlying H/∅ contrast. If the intervening 
TBUs between the two H’s are specified, it will no longer be possible to detect the presence of 
a triggering H using a finite number of calls to predecessor.

As for output locality, this process is not RSL for the same reason it is not ISL: the necessary 
information (preceding H tone) is not a bounded distance away regardless of whether you look 
at the input or output. And the formula in (48a) violates condition (27a) in that it needs to look 

16 The fact that both H’s are deleted from /sídáy/ is explained in an AR with a single H associated to two 
TBUs. The generalization would be complicated then in a string-based representation, in which each TBU must 
bear its own H. We put aside this complication, however, since even without it the rule is not ISL.

17 Note the process only applies at the end of a phrase (Odden 1994), but for convenience we use # as a 
phrase boundary.
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both backwards (to identify a preceding H tone) and forwards (to determine if x is phrase-final). 
So the process is also not A-RSL.

Next are two bounded variants of Meeussen’s Rule. In Luganda (Hyman & Katamba 2010), an 
underlying H lowers to L immediately following another H. Examples are shown in (49); the 
output forms are intermediate, before the application of other processes (see Hyman & Katamba 
2010).

(49) Luganda (Niger-Congo; Hyman & Katamba 2010)
a. /a-láb-a/ a-láb-a ‘s/he sees’
b. /bá-láb-a/ bá-làb-a ‘they see’
c. /bá-lí-láb-a/ bá-lì-làb-a ‘they will see’
d. /a-bá-tá-lí-láb-il-ila/ a-bá-tà-lì-làb-il-ila ‘they who will not look after’
e. /bá-ki-láb-a/ bá-ki-láb-a ‘they see it’

This process is ISL. Schematic examples are given in (50). Note in particular example (50c), in 
which two σ́’s are lowered. This shows the input-oriented nature of the process, as only in the 
input does that second σ́ follow another σ́.

(50) a. σσ́σ ⟼ σσ́σ
b. σ́σ́σ ⟼ σ́σ̀σ
c. σ́σ́σ́σ ⟼ σ́σ̀σ̀σ
d. σ́σσ́σ ⟼ σ́σσ́σ

The logical transduction includes the predicates σ́o(x) and σ̀o(x), which specify when a syllable 
is realized as H-toned or L-toned, respectively.

(51) Bounded Meeussen’s Rule in Luganda (ISL)

a. σ́o(x)
def
= σ́(x)∧¬σ́(p(x))

b. ¬σ́ σ́
x

c. σ̀o(x) = σ̀ ∨ (σ́(x)∧ σ́(p(x)))σ̀o(x) = σ̀ ∨ (σ́(x)∧ σ́(p(x)))σ̀o(x) = σ̀ ∨ (σ́(x)∧ σ́(p(x)))

d. σ́ σ́
x

(51a) specifies that a TBU is output as H-toned iff it is H-toned in the input (σ́(x)) and its 
predecessor is not H-toned in the input (¬σ́(p(x))). An example with indexed TBUs is given 
below. In (52) TBUs 1 and 4 satisfy σ́o(x), as they satisfy both σ́(x) and ¬σ́(p(x))—1 because it 
is the first TBU, and 4 because its predecessor is σ. Thus, 1′ and 4′ are labeled σ́ in the output.

(52) σ́ σ́ σ σ́

1 2 3 4
�→ σ́ σ̀ σ σ́

1′2′3′4′

In contrast, TBU 2 instead satisfies (51c) σ̀o(x), which specifies x is H-toned in the input and its 
predecessor is also H-toned (σ́(p(x))).

Over ARs, the desired map is as exemplified in (53).

(53) a. H H

σ σ σ

�→ H L

σ σ σ

b. H H

σ σ σ

�→ H H

σ σ σ

Both the second H in (53a) and the second H in (53b) follow an H in the input, but the lowering 
should only apply to (53a). Here we recall the theorem in (21), which asserts that for a process 
to be A-ISL, any changes on a particular tier must only use information that is local in the input 
on that tier. The Luganda map is not local in this way; whether or not an H changes to L depends 
both on whether or not there is a preceding H and whether their associated TBUs are adjacent 
on the TBU tier. But this requires a quantifier, as shown in (54a).
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(54) a. Lo(x)
def
= H(x)∧ H(p(x))∧ (∃y)[A(x , y)∧ A(p(x), p(y))]

b. H H
xy

This is then our first case of a map that is ISL but not A-ISL, or in other words, there are local 
maps that ARs actually render non-local.

Again we note here that this analysis is representation-dependent. For example, if the 
intervening unspecified TBUs receive some sort of representation on the tonal tier, the map 
would become A-ISL.18

(55) a. H H

σ σ σ

�→ H L

σ σ σ

b. H ∅ H

σ σ σ

�→ H H

σ σ σ

In (55b), an explicit unspecified symbol ∅ marks the intervening unspecified TBUs. Given 
this, the two examples can easily be distinguished again by simply examining the predecessor 
of the second H. Explicit unspecified marks on the tonal tier are not standard representation, 
and so we do not propose this as a solution to the problem. This example does, however, offer 
an interesting case study into the interaction of locality and representation. Given locality 
as defined presently, the Luganda process is local over strings regardless of underlying tone 
specifications, but it is only local over ARs given a particular representation of underlying 
tones. We will return to this point in the summary at the end of this section.

It was noted above that this process is necessarily input-oriented, in that the conditions for 
lowering need to be checked in the input form. Not surprisingly then, the process isn’t RSL 
or A-RSL. Consider again example (50c). In a RSL analysis, the formula for σ̀o(x) would be 
forced by condition (27b) to look at the output value of the predecessor. For the third TBU 
in (50c) the output value of its predecessor is σ̀, and so the conditions for lowering are not 
met. Furthermore, the map is also not A-RSL for the same reason it wasn’t A-ISL: determining 
whether two tones are associated to adjacent TBUs requires a quantifier regardless of whether 
you look at the input or the output.

Lastly, we consider another variant of Meeussen’s that produces an alternating pattern of H and 
L tones. In Shona, an H is lowered following another H. In contrast to Luganda, however, an H 
tone to which Meeussen’s Rule has applied does not serve as a trigger for a following H tone. 
Examples are given in (56).

(56) Shona (Niger-Congo; Odden 1986)
a. /hóvé/ [hóvé] ‘fish’
b. /né-hóvé/ [né-hòvè] ‘with-fish’
c. /né-é-hóvé/ [né-è-hóvé] ‘with-of-fish’
d. /né-é-é-hóvé/ [né-è-é-hòvè] ‘like-with-of-fish’

In (56), the underlying H tones in /hóvé/ ‘fish’ surface as L when following the H-toned prefix 
/né-/ ‘with’ in (56b). This lowering is blocked when the H-toned prefix /é-/ ‘of’ intervenes in 
(56c). Instead, the H tone of this prefix lowers.

This map is not ISL. To see why, compare the outputs for the second and third H-toned syllables 
in the four syllable word in (57).

(57) a. / σ́ σ́ σ́ σ́ /
[ σ́ σ̀ σ́ σ̀ ]

18 We thank an anonymous reviewer for pointing this out.
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b. / σ́ σ́ σ́ σ́ /
[ σ́ σ̀ σ́ σ̀ ]

The third syllable has an H tone in the input, and its predecessor and successor are also H-toned. 
But the exact same conditions hold for the second syllable, which instead is output as L-toned. 
Clearly, the input string does not contain the needed information to distinguish these two 
output positions. For the same reason, this pattern is not A-ISL. As shown in (58), the input 
string of the tonal tier does not sufficiently distinguish the H’s that lower from those that do 
not.

(58) a. H H

σ σ σ

�→ H L

σ σ σ

b. H H H H

σ σ σ σ σ

�→ H L H L

σ σ σ σ σ

Clearly, the crucial information is available provided we can access the output structure. As 
a map over strings then, alternating Meeussen’s is RSL. The formulas in (59) assert which 
syllables bear high and low tones.

(59) Alternating Meeussen’s Rule in Shona (RSL)

a. σ́o(x)
def
= σ́(x)∧ (#o(p(x))∨ σ̀o(p(x)))

b. σ̀o σ́
x

c. σ̀o(x)
def
= σ̀(x)∨ (σ́(x)∧ σ́o(p(x)))

d. σ̀
x
or σ́o σ́

x

In both cases these formulas determine the output tone by looking at the output tone of the 
TBU’s predecessor: if the predecessor is H-toned the TBU is L-toned, and vice versa. (Underlying 
L-tones remain L.) Consider a string of four H-toned TBUs, σ́σ́σ́σ́, which should be mapped to 
σ́σ̀σ́σ̀. The first and third TBUs remain high in the output because they satisfy σ́o(x): they are 
high in the input and their predecessor in the output is either low or they are the first TBU. In 
contrast, the second and fourth TBUs are low in the output because they do not satisfy σ́o(x) 
but they do satisfy σ̀o(x): they are high in the input and their predecessors in the output are 
also high.19

Likewise, the map is also A-RSL, as the changes that take place on the tone tier are essentially 
the same as in the string-based map. The formulas just need to refer to H and L instead of σ́ and 
σ̀, as in (60). This is because the changes only take place on the tonal tier and do not affect the 
associations of tones to TBUs.

(60) Alternating Meeussen’s Rule in Shona (A-RSL)

a. Ho(x)
def
= H(x)∧ Lo(p(x))

b. Lo H
x

c. Lo(x)
def
= L(x)∨ (H(x)∧ Ho(p(x)))

d. L
x
or Ho H

x

19 In contrast, an input like /σ́σ̀σ̀σ́/ would not change. This time the first and fourth TBUs satisfy σ́o(x), and the 
second and third TBUs satisfy σ̀o(x). For the latter, just being low in the input is sufficient (by the first disjunct) 
to remain low in the output.
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3.3 Interim summary

Table 2 repeats the summary of the results of our analyses. What’s clear from these results is 
that 1) both input and output locality play a role in the typology of tone patterns, as neither 
subsumes the other. In addition, both strings and ARs appear to make distinct contributions 
to locality, as there exist maps that are only local with each representation and not the other. 
Furthermore, there are multiple reasons why a particular map does not belong to a particular 
class. Some maps (e.g., Bemba, Kuki-Thaadow, Luganda, and Shona) are necessarily ISL/A-ISL 
or RSL/A-RSL because they require access to the input or output, respectively. Some maps (e.g., 
Zigula and Arusa) are necessarily A-ISL or A-RSL because over strings (but not ARs) the trigger 
is an unbounded number of positions away. In other cases, a map violates the formal constraints 
on the function class, such as RSL/A-RSL’s prohibition against looking in both directions (e.g., 
Shambaa and Arusa) or A-ISL/A-RSL’s restriction on using cross-tier information (e.g., Luganda). 

In addition, the survey identified three cases—Zigula, Arusa, and Luganda—in which the 
classification over ARs depended on another representational assumption, namely what and 
how tones are marked underlyingly. Such cases demonstrate how this computational framework 
allows us to clearly enumerate the options for preserving locality. For example, in Luganda, do 
we introduce an explicit unspecified symbol on the tone tier in order to preserve locality over 
ARs? Or do we dispense with ARs and instead use a string analysis? Option three of course is to 
dispense with locality altogether and recognize the process as a ‘truly’ non-local phenomenon. 
We will not provide an answer for Luganda itself here. Rather, its example demonstrates how 
the precision of this computational framework facilitates the demarcation of local versus non-
local and clarifies how that line is affected by representational choices.

At the outset of the paper we noted a goal of narrowing down the necessary categories for a 
computational theory of tone. Doing so requires further investigation into the gaps in the table 
in terms of what classes overlap others. Specifically, what’s missing are examples of processes 
in the following categories. One, a process that is only RSL, as the one example of an RSL map 
is also A-RSL. This would be a process that requires reference to the output structure, but for 
which the AR disrupts that output-locality (as in Luganda, in which input-locality over ARs was 
not possible without cross-tier information). And two, a process that is only A-RSL, as every 
A-RSL map is also either A-ISL or RSL. This would be a process that again necessarily references 
the output structure, but for which the trigger is an unbounded number of positions away given 
a string representation.

These gaps may be filled in by further investigation, or they may be accidental. Further study 
will thus aim to expand on this catalog of tone processes. While the non-existence of a particular 
process cannot be proven, as the catalog becomes more exhaustive the continued absence of 
processes in these categories will build confidence in a proposal that they can be omitted from 
a computational theory of tone.

4 Discussion
Our survey of tone processes revealed that the traditional distinction between local and long-
distance phenomena is more nuanced when assessed in terms of the computational notions of 

PROCESS ISL A-ISL RSL A-RSL

Bounded spread (Bemba)    

Bounded shift (Kuki-Thaadow)    

Unbounded shift to penult (Zigula)    

Unbounded spread to penult (Shambaa)    

Unbounded Meeussen’s, deletion (Arusa)    

Bounded Meeussen’s, lowering (Luganda)    

Alternating Meeussen’s, lowering (Shona)    

Table 2 Summary of analyses.
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input and output locality defined at the outset of the paper. The ways in which locality interacts 
with representation is not as straightforward as one might think. This section considers the 
broader implications of these results for phonological theory. In §4.1, we review the import that 
locality has had in the phonological literature and compare our formal definitions of locality 
with previous conceptions. Then in §4.2, we discuss how the results presented here can be 
developed into a complete computational theory of tone processes.

4.1 Previous considerations of locality and representation

Considerations of locality have loomed large in the literature on phonological representations. 
Odden (1995: 474) states:

A widely held desideratum in phonological theory—indeed much of the motivation 
for nonlinear phonology and one of the outstanding problems of linear phonology—
is that rules should be ‘local.’ Though there are many unresolved problems in the 
locality issue, it is generally agreed that a local rule formulation would only allow 
specification of one element to the right and/or left of the focus.

As an example, Odden raises the process of unbounded spread to antepenultimate position in 
the Nguni languages, such as Ndebele (Sibanda 2004; Hyman 2011):

(61) Ndebele (Niger-Congo; Sibanda 2004; Hyman 2011)
a. /ú-ku-hlek-a/ [ú-kú-hlek-a] ‘to laugh’
b. /ú-ku-hlek-is-a/ [ú-kú-hlék-is-a] ‘to amuse (make laugh)’
c. /ú-ku-hlek-is-an-a/ [ú-kú-hlék-ís-an-a] ‘to amuse each other’

Odden notes that it is possible to posit the iterative rule in (62) for this process. The target for 
the rule is a syllable that is followed by two other syllables. As shown in (63), this will iterate 
up to but not including the penult, which is followed by only one syllable.

(62) H

σ σ σ σ

(63) H

σ σ σ σ σ σ

→ H

σ σ σ σ σ σ

→ H

σ σ σ σ σ σ

→ H

σ σ σ σ σ σ

However, this rule is non-local according to Odden’s definition, because it refers to more than 
one syllable to the target’s right. Instead, Odden argues that an accentual analysis makes such 
rules local. If the antepenultimate syllable receives an accent, then we can formulate a tone-
accent attraction rule, as in (64a), which associates the H and the antepenult. While Odden 
does not explicitly state how spreading would be accomplished, one could imagine that the 
Well-Formedness Condition (WFC; Goldsmith 1976) would apply and fill in the intervening 
TBUs, as in the derivation in (64b).

(64) a. H

σ*

b. H

σ σ σ σ σ σ

→ H

σ σ σ σ
*
σ σ

→ H

σ σ σ σ
*
σ σ

→ H

σ σ σ σ
*
σ σ

The rule in (64a) is local, according to Odden (1995)’s definition, as it refers only to the target. 
However, there is a bit of a trick here: it creates a gapped structure in between two non-local 
TBUs—the initial and antepenult syllables—over which the WFC then operates.

This concern for locality has been no less important for Optimality Theory (OT; Prince & 
Smolensky 2004). As McCarthy (2010: 200) states, one of the ‘fundamental descriptive and 
explanatory goals of OT’ is ‘to derive complex patterns from the interaction of simple constraints’. 
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One such concrete proposal is the articulatory notion of ‘strict locality,’ meaning articulatory 
locality at the level of the segment (Gafos 1996; Chiośain & Padgett 2001). Under such a theory, 
spreading is motivated by output markedness constraints grounded by the phonetics governing 
the articulation of adjacent segments.

However, not all tone patterns can be motivated entirely by local output conditions. A case in 
point is that of bounded shift in Rimi (Myers 1997), discussed in §2.1 and repeated below in (65).

(65) Rimi (Schadeberg 1979; Myers 1997)
a. /u-hang-a/ [u-hang-a] ‘to meet’
b. /u-pú̧m-a/ [u-pu̧m-á] ‘to go away’
c. /mu-ntu/ [mu-ntu] ‘person’
d. /rá-mu-ntu/ [ra-mú-ntu] ‘of a person’
e. /u-huvi-i/̧ [u-huvi-i]̧ ‘belief’
f. /mu-tém-i/̧ [mu-tem-í] ‘chief’

Crucial to capturing this shift is the position of the underlying H tone. To handle this, Myers 
(1997) posits the following Locality constraint.

(66) Local (Myers 1997: 876, (50)): If an input tone T has an output correspondent T′, 
some edge of T must correspond to some edge of T′.

Importantly, this constraint is not a markedness condition, as it crucially refers to the input. 
In fact, it is more of a ‘two-level’ constraint (McCarthy 1996; Kager 1999), in that it refers 
both to the input position in which a tone appears in the UR as well as the output position in 
which it surfaces in the SR. The need for such constraints in an analysis of Rimi in OT, which 
is classically output-oriented, again shows that the pattern is input-oriented. That nature of the 
pattern is confirmed with our analysis that it is ISL and A-ISL but not RSL/A-RSL. And its input 
orientation holds independently of the use of ARs versus strings. In this way we see that the 
nature of a given tone pattern has at least two facets: its locality (related to the need for ARs or 
not to render it local) and its orientation with respect to input- or output-based computation.

Furthermore, output constraints often invoked to explain tone patterns are not ‘local’ by the 
definitions already put forth. Much of the foundational work on tone in OT (Myers 1997; Cassimjee 
& Kisseberth 1998; Yip 2002) makes copious use of gradient Align constraints (McCarthy & 
Prince 1993; 1995).20 A gradient Align constraint counts the distance between two elements 
in a representation, which is difficult to fit into a conception of ‘local’. In computational terms, 
this kind of constraint is in fact quite complex (Eisner 1997b). While proposals to replace Align 
with local constraints exist (Eisner 1997a; McCarthy 2003), they have not been widely adopted. 
A logical perspective like the one put forth in this paper presents a possible solution to this, as 
restricted logics can be used as a local constraint definition language (Jardine & Heinz 2016). 
However, this is not a trivial issue, as optimization can generate non-local patterns purely from 
computationally local constraints (Gerdemann & Hulden 2012; Koser & Jardine 2020).

4.2 A computational theory of tone

The results of our survey increase our understanding of how ARs relate to locality in two key 
ways: 1) they highlight which types of processes are made local by ARs, namely exactly those 
for which the alternation depends on local information within, but not across, tiers, and 2) they 
show that both input and output locality are needed in a comprehensive computational theory 
of tone. Yet, while the A-ISL and A-RSL properties contribute to our understanding of locality 
in tone, several key questions remain.

First A-ISL and A-RSL do not cover all attested tone patterns. One example in our survey was 
local Meeussen’s rule in Luganda, which was shown in §3.2 not to be A-ISL because it required 
reference to both tiers at once. One interpretation of this result is that both ISL and A-ISL are 
necessary to capture tone. Indeed, what this makes clear is that local information on the TBU 
tier—specifically, the tone values of neighboring TBUs—is also necessary to capture at least 
some processes. Another way of interpreting this result is that autosegmental locality would be 
better defined using some representation other than our naïve implementation of ARs. As one 

20 Zoll (2003) shows how many tone patterns can be explained without Align constraints, but does not 
completely do away with them.
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reviewer points out, we could define some representation that includes both the autosegmental 
tonal tier and the local tonal information on the TBU tier. Indeed, Jardine (2020)’s recent work 
on locality in tonal phonotactics uses grammars that reference both in tandem. Thus, a unified 
computational theory of tone is likely possible given the right kind of representation.

Another example that escaped our definition of locality was the unbounded spreading pattern 
in Shambaa. We showed in §2.2 that ‘generic’ unbounded spreading is straightforwardly RSL 
and A-RSL. But unbounded spread in Shambaa is not, because it requires ‘looking ahead’ to 
determine whether it has reached the penultimate syllable (and again, (A-)RSL forbids any 
lookahead).

There are two possible solutions to this. One is to appeal to a function class that combines 
these two abilities, which is precisely what the input-output strictly local (IOSL) functions do 
(Chandlee et al., in prep.). Briefly, as their name suggests, the IOSL functions allow reference 
to local information both in the input and in the output. Space limitations prevent a thorough 
description and formalization of this class, but in future work they may provide a useful means 
of investigating the interaction of tone processes and prosodic or metrical structure.21 

A second solution is to break the process down into the composition of an RSL function and an 
ISL function, as already discussed at the end of §3.1. Such a decomposition strategy may allow 
other processes to be brought into the A-ISL and A-RSL fold. As discussed in 2.2, the unidirectional 
nature of RSL and A-RSL exclude bidirectional processes such as those highlighted in Jardine 
(2016a). Briefly, Jardine (2016a) points out the computational complexity of unbounded tone 
plateauing, in which two H tones in a domain merge and associate to all TBUs in between them, 
no matter how far apart they are. While considerations of space preclude a detailed discussion, 
this process could be made computationally local by decomposing it into an A-ISL merging 
process composed with an A-RSL spreading process.

This is related to another big question, which is how a computational theory can combine 
individual processes to generate a full phonological grammar. In Appendix A we show how 
multiple processes can be combined directly into a single logical transduction, but this is 
only a start. An obvious option for combining functions from different classes is functional 
composition. However, composition is potentially very powerful, as computational properties 
may not be preserved under composition. Neither the ISL class nor the OSL class as originally 
defined is closed under composition, meaning that the composition of two ISL processes is not 
always itself ISL. Future work can and should study under what conditions A-ISL and A-RSL 
are preserved under composition and when they are not. Additionally, other operations for 
combining functions, such as priority union (Karttunen 1998) can and should be investigated. 
Finally, as noted in §3 a full grammar will also require reference to prosodic structure 
(Dolatian 2020). As noted there, it is possible to write a grammar that references this kind of 
representation, including the building of and translation between different kinds of structures.

Lastly, as with segmental phonology, we could say that patterns like Shambaa’s unbounded 
spreading and unbounded tone plateauing are simply non-local and require a different 
mechanism for computing long-distance dependencies. This raises new questions in terms of 
whether and how to restrict those dependencies and what their existence predicts typologically. 
For example, a reviewer points out that ‘long-distance’ Meeussen’s (as in (19)) is only A-ISL if 
there is an underlying H/∅ contrast, as any intervening tones marked on the tone tier would 
disrupt the locality of the two H’s. If all tone patterns are local in the sense defined in this 
paper, this in turn predicts that such ‘long-distance’ effects are only possible in systems with 
privative tone. Whether such predictions turn out to be true is an interesting question we leave 
for future work.

5 Conclusion
This paper applied computational techniques to study, in a rigorous way, what exactly ARs 
contribute to phonological locality. The framework provided here allows us to formally 

21 See Chandlee (2019) for an application of the IOSL functions to an interaction of tone sandhi processes 
in Tianjin Chinese. See also Graf & Mayer (2018) for an approach to Sanskrit n-retroflexion that uses an IOSL 
function to project segments onto a tier over which well-formedness can then be assessed.
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distinguish which tone processes are and are not local, and which are only made local with ARs 
(e.g., Meeussen’s in Arusa is neither ISL nor RSL, but it is A-ISL) and those that are not local 
over ARs (such as unbounded spreading in Shambaa). In addition, it draws a clear distinction 
between input locality and output locality, both of which appear to be sufficient conditions to 
accommodate the full typology of tone. Lastly, the survey also revealed how the interaction of 
the tone process with other factors like metrical structure can also affect its locality. Consider 
again Shambaa, which is neither input nor output local by the definitions used in this paper. If, 
however, the representation including structural marking (e.g., penultimate), then the process 
can be analyzed as local. Such results may have implications for how the different components 
of a phonological grammar (i.e., maps, representations, structure) are learned, in particular 
how their varying and interacting contributions to locality may demand distinct learning 
mechanisms and/or factored approaches to learning (see e.g., Heinz & Idsardi 2013; Heinz & 
Rogers 2013).

The computational properties used in our analyses make precise what it means to be local 
over different representations and serve as the foundation for a computational theory of tone 
that requires more than one notion of locality. Such a theory will ultimately narrow in on the 
minimal number of computational categories needed to accommodate the full range of tone 
processes. What those categories are is a question we don’t yet have a complete answer to, 
because this investigation has raised some non-trivial questions that require further study. In 
addition, we have established here a framework through which the computational properties 
of competing analyses grounded in non-computational theories can be assessed. If a particular 
process is local by our definitions under one set of assumptions but not another, that fact can 
be used—alongside several other considerations such as how that process fits into the larger 
grammar—to argue for or against a particular analysis.

Looking forward then, further study will aim to fit the complete typology of tone processes 
into the provided framework, investigating the full scope of what happens in tone. This 
includes those processes that have proven to be difficult for most if not all approaches, such as 
interactions between tone and segmental features (e.g., Odden 2011; Hyman 2014b). Fitting 
such processes into the framework provided here allows for their apparent exceptionality to 
be either confirmed or resolved, again identifying in a well-defined sense how they differ 
from other tone processes and how those differences relate to the interaction of locality and 
representation.
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