
Appendix:
Integrating 'Inside Out' with broader theories of local context computation

As announced in Section Error! Reference source not found., we provide as a 'proof of concept' an
algorithm that integrates 'inside out' order of evaluation for modifiers with different orders for other
constructions. We will specify a procedure that takes as input a sentence with a distinguished position
(written as _), and returns the set of alternatives that must obey the equivalence in Error! Reference
source not found., thus yielding the value of the local context of _ .
 Due to the complexity of the problem, it is important to make things as simple as possible by
investigating a tiny fragment (as is done in all studies that seek to reconstruct local contexts in a
predictive fashion). We thus start from the fragment in (1), which generates sentences of the form (p1
and p2), (_ and p2) (when we wish to assess the local context of _), but also quantified statements with
a main predicate F, of the form (Q F). Here Q stands for a quantified noun phrase of the form someone,
some journalist, every student, etc. (proper names can also be thought of as special cases of generalized
quantifiers)1. We do not seek to decompose Q further because we will be solely interested in NPs that
appear in predicative (i.e. verbal) position. We will also consider modified predicates of the form (P1
P2), where P2 corresponds to a nominal predicate and P1 to its modifier. It is important that nominal
modifiers are preposed, as in English and Chinese, because our goal is to determine how 'inside out'
(for NPs) and linear-looking orders of evaluation (for conjunction) can be combined when they 'pull' in
different directions. For this reason, we will also consider quantified statements of the form (Q (P1 P2)),
where (P1 P2) is a modified predicate – e.g. Someone is a female engineer. We will also consider
formulas for the form (Q (_ P1)), e.g. when we wish to assess the local context of an intersective modifier
added to P1.

(1) a. Vocabulary: we consider a highly simplified fragment with (i) propositional and predicative constants
pi, Pi (ii) unanalyzed quantificational Noun Phrases Qi, (iii) predicative and propositional conjunctions
written as and. To specify the position whose local context is computed, the symbol _ is added to the set of
propositional and to the set of predicative expressions.
b. Syntax:
If f and g are propositional expressions, so is (f and g).
If F and G are predicative expressions, so are (F and G) and (F G)
If F is a predicative expression, (Q F) is a propositional expression.

 We then consider a formula with _ in a certain position, e.g. (_ and p1), and we gradually
replace expressions with variables of the same type when the information these expressions provide is
not accessible in the computation of the local context. For notational simplicity, we use primed
expressions – e.g. p'1, P'3 as variables added to our official language to obtain this result, with the same
types as the unprimed expressions. In our example, then, the goal is to transform (_ and p1) into (_ and
p'1), thus indicating that the information about the second conjunct is not accessible in the computation
of the local context of the first conjunct.
 But how can this transformation be achieved in a systematic fashion? We will transform an
entire formula step by step. Re-write will be done constituent by constituent, marking an expression
with m after it has been treated in the appropriate fashion. In the initial stage, we always have m on _, the
position whose local context we are computing. The goal is then to move m to the outermost position in
the sentence by way of an iteration of the rewrite rules in (2). Importantly, these rules are just the
compact specification of a useful algorithm; they have nothing to do with rules used in syntax to indicate
how constituents are generated.

(2) Permissible transformations (we use lowercase letters for propositional expressions and uppercase letters
for predicative expressions, and expressions like g', G' for 'fresh' propositional or predicative variables,
e.g. p1', P1')
1. (fm and g) ® (f and g')m
2. (f and gm) ® (f and g)m

1 In generalized quantifier theory, Sam can be given a quantifier type <et, t>. If s is the individual denoted by Sam,
the generalized quantifier value of the proper name can be defined as: Samw = lf<e, t> . f(s) = 1.

3. (Fm and G) ® (F and G')m
4. (F and Gm) ® (F and G)m
5. (Fm G) ® (F G)m

6. (F Gm) ® (F' G)m

7. (Q Gm) ® (Q G)m

The boldfaced rules in (2)3,5,6 require a comment. First, despite the similarities in their semantics,
predicate conjunction and predicate modification don't have the same rewrite effects: (2)3 specifies that
the first conjunct doesn't have access to information in the second, while (2)5 specifies that a preposed
predicate modifier does have access to the predicate it modifies. Second, (2)6 specifies that a predicate
G modified by a preposed predicate F does not have access to the value of F, which is essential to
account for the acceptability of a pregnant woman, for instance.
 The procedure then works as follows. We start from a sentence with a distinguished position _m

to indicate which local context we are computing. We then gradually replace the necessary expressions
with variables, moving the m around in accordance with the rules in (2). To facilitate cross-reference to
relevant rules in derivations, we superscript ® with a number corresponding to the rule from (2) which
is invoked (e.g. ®3 indicates that the rewrite is permitted by rule (2)3). When the m is in outermost
position, we use the formula (without m) to tell us which alternatives must satisfy the equivalence in
Error! Reference source not found..2
 Crucial cases are derived in (3). To illustrate, it might help to say in words about what (3)a
does. It seeks to compute the local context of the first conjunction, marked as _, in a formula (_ and p1).
It does so by starting with a version of the formula with the position _ marked with m, hence: (_m and p1).
Then it pushes m to the outermost position by rewriting this formula as (_ and p1')m thanks to rule (2)1.
Replacing the distinguished position _ with d' or with (c' and d'), we finally require that the local context
c' should be the strongest value x which, for all appropriate d' and p1', satisfies relative to C the
equivalence: ((c' and d') and p1') Û (d' and p1').

(3) a. (_m and p1) ®1 (_ and p1')m and thus we require that for all d', p1',
C |=c'® x ((c' and d') and p1') Û (d' and p1').

b. (Q (_m P2)) ®5 (Q (_ P2)m) ®7 (Q (_P2))m, hence to compute the local context of a modifier of P2 we will
require that for all d',
C |=c'® x (Q ((c' and d') P2)) Û (Q (d' P2))

c. The same result is obtained if P2 is replaced with a modified Noun Phrase P3(P2): the final condition will
ensure that the local context of a further modifier, starting from (Q (_m P3(P2))), is computed in a way that
ensures access to both innermost predicates, thanks to the equivalence:
C |=c'® x (Q ((c' and d')(P3P2))) Û (Q (d' (P3P2)))

d. By contrast, the local context of a modified Noun Phrase P2 in P1P2 does not have access to the value of
the modifier:
(Q (P1 _m)) ®6 (Q (P1' _)m) ®7 (Q (P1' _))m, and we will require that for all d', P1',
C |=c'® x (Q (P1' (c' and d')))Û (Q (P1' d'))

e. When we compute the local context of a modifier in a first conjunct, we take into account part of the
information that linearly follows, namely that pertaining to the modifie Noun Phrase, but we don't take
into account the second conjunct:
((Q (_m P2)) and p1) ®5 ((Q (_ P2)m) and p1) ®7 ((Q (_P2))m and p1) ®3 ((Q (_P2)) and p1')m, hence a requirement
that for all d', p1',
C |=c'® x ((Q ((c' and d') P2)) and p1') Û ((Q (d' P2)) and p1')

2 More formally: If (… d …) is a sentence of the fragment in (1), and if (… _m …) can be rewritten into another
formula (••• _ •••)m in accordance with (2), with (primed, lowercase or uppercase) variables v'1…v'n, the local
context of d in (… d …) relative to a context C is the strongest proposition or property x which guarantees that for
all d' of the same type as d, for all expressions v'1…v'n (of the appropriate types):

C |=c'® x (•••(c' and d') •••) Û (••• d' •••)

f. When a conjunction (P1 and P2) modifies a Noun Phrase P3 in the structure ((P1 and P2) P3), the local
context of P1 has access to P3 but not to P2:
(Q ((_m and P2) P3)) ®1 (Q ((_ and P2')m P3)) ®5 (Q ((_and P2') P3)m) ®7 (Q ((_and P2') P3))m, hence a requirement
that for all d', P2',
C |=c'® x (Q (((c' and d') and P2') P3)) Û (Q ((d' and P2') P3))

g. On the other hand, in the same structure ((P1 and P2) P3), the local context of P2 has access to both P3 and
P1:
(Q ((P1 and _m) P3)) ®2 (Q ((P1 and _)m P3)) ®5 (Q ((P1 and _) P3)m) ®7 (Q ((P1 and _) P3))m, hence a requirement
that for all d',
C |=c'® x (Q ((P1 and (c' and d')) P3)) Û (Q ((P1 and d') P3))

 Examples (3)a-d are unsurprising since they just encode old or new generalizations: the second
conjunct isn't accessed in the computation of the local context of the first conjunct (= (3)a); the local
context of a higher preposed modifier has access a lower noun or noun phrase (= (3)b,c); and the local
context of a noun doesn't have access to preposed modifiers (= (3)d).
 (3)e highlights the interplay between different notions of order: in computing the local context
of the modifier embedded in the first conjunct, we have access to the modified Noun Phrase but not to
the second conjunct, although both follow the modifier. (3)f,g present new benefits of the analysis: the
system correctly predicts that in a modified Noun Phrase of the form ((P1 and P2) P3), the local context
of P2 has access to P1 and P3, whereas the local context of P1 has access to P3 but not to P2, despite the
fact that both appear to its right. This was exactly the challenge we announced in Section Error!
Reference source not found. in relation to Error! Reference source not found. and Error! Reference
source not found. (= Error! Reference source not found.a,b and Error! Reference source not
found.a,b respectively).3
 In sum, we have provided a 'proof of concept' for a procedure that integrates the 'insider out'
order of evaluation for NP modifiers with linear-looking orders for conjunctions. We had to provide
this integration because as things stand no more general notion of order appears to work for both
construction types – a situation that ought to be remedied in the future.

3 We also predict that reversing the order of the conjunctions in Error! Reference source not found. should yield
related contrasts. One consultant helpfully re-rated Error! Reference source not found. and provided
comparative judgments with (i). Contrasts go in the same direction: Error! Reference source not found.a,b,c,d
are rated as 6, 2, 7, 7, while with the order of the conjuncts reversed as in (i), ratings are 5, 1, 7, 7.

(i) Under Nazi occupation, this heroic family hid…
a. 5 a dark-skinned and Hasidic French Jew.
b. 1 a dark-skinned and Jewish French Hasid.
c. 7 a dark-skinned and Hasidic French child.
d. 7 a dark-skinned and Jewish French child.

