
Appendix A Defining PF+LF Minimalist Grammars

A.1 Overview

The revised Minimalist Grammars (MGs) used to perform the tests in this paper are constructed
to simultaneously derive PF representations and Heim & Kratzer (1998)-style LF representations
(including indexed traces and lambda abstractors).

Our formulation of MGs will use a chain notation similar to that of Stabler & Keenan (2003),
though their chains deal in strings where ours deal in trees. In short, chain notation represents a step
in a derivation as an ordered tuple of trees with features (a chain), where the first tree is the main
tree being built, and all of the others represent movers waiting to reach their final landing spots.
However, since we are simultaneously building PF and LF representations, the members of our
chains will not be individual trees, but pairs of trees. Lexical items are themselves (very small)
chains with PF and LF representations, which are then manipulated by the operations merge and
move to create larger chains. Importantly, in a chain notation, movement does not involve merging
some constituent into the tree and then moving it later; instead, traces are inserted in the movers’
place from the get-go, with movers being added to the chain to await their final landing spot, at
which point they are removed from the chain and added to the main tree being built. Within a given
(PF or LF) tree, a structure [< A B] indicates that the head of the structure is A or some head within
A, while [> A B] indicates that the head is B or some head within B.

One difference between the formulation here and that in the informal discussion in the body of
the paper is that while the latter had a single type of selector feature =f, here we use two distinct
selector features, =f (which selects something to the right, i.e., a complement) and f= (which selects
something to the left, i.e., a specifier). This is not a necessary stipulation, but it is a convenient one;
the MG defined here can be formulated equally well with a single selector feature =f.

After a full detailing of all of the formal definitions and merge and move (sub)rules, we will
provide a brief, informal illustration of the basics of how the grammar works.

A.2 Formal definitions

A PF+LF Minimalist Grammar (PF+LF MG) is an ordered tuple 〈FEAT, in,PF,LF,LEX〉. FEAT is
a set of features, defined by means of a set BASE of base features as follows:

(1) FEAT :=
⋃{{f,=f,f=,+f,+fP,+fL,-f,-fP,-fL} | f ∈ BASE}

in : FEAT→ N is the indexation function, a one-to-one function from features to natural numbers.
PF is a PF alphabet, and LF an LF alphabet, without lambda abstractors or traces. Let TRACES :=
{tin(:) | : ∈ FEAT}, and let LAMBDAS := {_in(:) | : ∈ FEAT}. Let TREESPF be the set of all PF
trees, i.e., those trees—defined in the usual way—whose leaf nodes are labeled with members of
PF∪ {Y} (where Y is the empty string) and whose internal nodes are labeled < or > (indicating
left- or right-headedness). Let TREESLF be the set of all LF trees, i.e., those trees whose leaf nodes
are labeled with members of LF∪ TRACES∪ LAMBDAS, and whose internal nodes are labeled <
or >. A feature-specified tree pair (FST2) is an ordered triple (ga, gb, X), where ga ∈ TREESPF,
gb ∈ TREESLF, and X ∈ FEAT∗ (the set of strings of features, including the empty string). For ease
of reading, PF trees will be in red, and LF trees in blue. A chain is a non-empty ordered tuple
of FST2s. The first FST2 in a chain is its primary FST2. The first feature in an FST2’s string of
features (if it is non-empty) is its active feature. LEX is the lexicon: a set of chains, where each
lexical entry is a chain consisting of a single FST2, with the PF and LF trees in that FST2 consisting
of a single node (that lexical item’s PF and LF representation).

There are two operations on chains, where each operation is a function whose output is itself a
chain: binary merge, and unary move. In what follows, each of these operations is divided into eight

1

2 Pasternak & Graf

sub-operations, depending on whether (and how) the selected-for phrase undergoes subsequent
movement. These sub-operations have disjoint domains, so merge and move are in fact functions.
For merge operations, the first argument is the one whose primary FST2 contains the selector
feature (=f or f=), and the second the one whose primary FST2 contains the category feature (f).
For ease of reading, we will rewrite merge(�, �) as � merge �, and move(�) as move �. For a
given PF+LF MG �, the language of � is the closure of �’s lexicon under merge and move.

For all definitions, U and V (with various indices) are variables over FST2s. In a given chain,
U1 . . . U< indicates a (possibly empty) subsequence of FST2s. X (with varying indices) is a variable
over (possibly empty) feature (sub)strings.

A.3 Merge operations

A.3.1 Merge in complement

merge-c-N (merge in complement, no subsequent movement)

〈(g1a, g1b, =x X1); U1 . . . U<〉 merge 〈(g2a, g2b, x); V1 . . . V=〉 =
〈([< g1a g2a], [< g1b g2b], X1); U1 . . . U<; V1 . . . V=〉

merge-c-PL (merge in complement, subsequent PF+LF movement)

〈(g1a, g1b, =x X1); U1 . . . U<〉 merge 〈(g2a, g2b, x -f X2); V1 . . . V=〉 =
〈([< g1a Y], [< g1b tin(-f)], X1); (g2a, g2b, -f X2); U1 . . . U<; V1 . . . V=〉

merge-c-P (merge in complement, subsequent PF-only movement)

〈(g1a, g1b, =x X1); U1 . . . U<〉 merge 〈(g2a, g2b, x -fP X2); V1 . . . V=〉 =
〈([< g1a Y], [< g1b g2b], X1); (g2a, Y, -fP X2); U1 . . . U<; V1 . . . V=〉

merge-c-L (merge in complement, subsequent LF-only movement)

〈(g1a, g1b, =x X1); U1 . . . U<〉 merge 〈(g2a, g2b, x -fL X2); V1 . . . V=〉 =
〈([< g1a g2a], [< g1b tin(-fL)], X1); (Y, g2b, -fL X2); U1 . . . U<; V1 . . . V=〉

A.3.2 Merge in specifier

merge-s-N (merge in specifier, no subsequent movement)

〈(g1a, g1b, x= X1); U1 . . . U<〉 merge 〈(g2a, g2b, x); V1 . . . V=〉 =
〈([> g2a g1a], [> g2b g1b], X1); U1 . . . U<; V1 . . . V=〉

merge-s-PL (merge in specifier, subsequent PF+LF movement)

〈(g1a, g1b, x= X1); U1 . . . U<〉 merge 〈(g2a, g2b, x -f X2); V1 . . . V=〉 =
〈([> Y g1a], [> tin(-f) g1b], X1); (g2a, g2b, -f X2); U1 . . . U<; V1 . . . V=〉

merge-s-P (merge in specifier, subsequent PF-only movement)

〈(g1a, g1b, x= X1); U1 . . . U<〉 merge 〈(g2a, g2b, x -fP X2); V1 . . . V=〉) =
〈([> Y g1a], [> g2b g1b], X1); (g2a, Y, -fP X2); U1 . . . U<; V1 . . . V=〉

merge-s-L (merge in specifier, subsequent LF-only movement)

〈(g1a, g1b, x= X1); U1 . . . U<〉 merge 〈(g2a, g2b, x -fL X2); V1 . . . V=〉 =
〈([> g2a g1a], [> tin(-fL) g1b], X1); (Y, g2b, -fL X2); U1 . . . U<; V1 . . . V=〉

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 3

A.4 Move operations

move is defined only for those chains meeting the following conditions: (I) the primary FST2 has
as its active feature a movement licensor feature +g (or +gP, +gL), and (II) there is exactly one
non-primary FST2 whose active feature is -g (or -gP, -gL) (Shortest Move Constraint).1

A.4.1 PF+LF movement

move-PL-N (PF+LF movement with no subsequent movement)

move 〈(g1a, g1b, +g X1); U1 . . . U<; (g2a, g2b, -g); V1 . . . V=〉 =
〈([> g2a g1a], [> g2b [> _in(-g) g1b]], X1); U1 . . . U<; V1 . . . V=〉

move-PL-PL (PF+LF movement with subsequent PF+LF movement)

move 〈(g1a, g1b, +g X1); U1 . . . U<; (g2a, g2b, -g -h X2); V1 . . . V=〉 =
〈([> Y g1a], [> tin(-h) [> _in(-g) g1b]], X1); U1 . . . U<; (g2a, g2b, -h X2); V1 . . . V=〉

move-PL-P (PF+LF movement with subsequent PF-only movement)

move 〈(g1a, g1b, +g X1); U1 . . . U<; (g2a, g2b, -g -hP X2); V1 . . . V=〉 =
〈([> Y g1a], [> g2b [> _in(-g) g1b]], X1); U1 . . . U<; (g2a, Y, -hP X2); V1 . . . V=〉

move-PL-L (PF+LF movement with subsequent LF-only movement)

move 〈(g1a, g1b, +g X1); U1 . . . U<; (g2a, g2b, -g -hL X2); V1 . . . V=〉 =
〈([> g2a g1a], [> tin(-hL) [> _in(-g) g1b]], X1); U1 . . . U<; (Y, g2b, -hL X2); V1 . . . V=〉

A.4.2 PF-only movement

move-P-N (PF-only movement with no subsequent movement)

move 〈(g1a, g1b, +gP X1); U1 . . . U<; (g2a, Y, -gP); V1 . . . V=〉 =
〈([> g2a g1a], g1b, X1); U1 . . . U<; V1 . . . V=〉

move-P-P (PF-only movement with subsequent PF-only movement)

move 〈(g1a, g1b, +gP X1); U1 . . . U<; (g2a, Y, -gP -hP X2); V1 . . . V=〉 =
〈([> Y g1], g1b, X1); U1 . . . U<; (g2a, Y, -hP X2); V1 . . . V=〉

A.4.3 LF-only movement

move-L-N (LF-only movement with no subsequent movement)

move 〈(g1a, g1b, +gL X1); U1 . . . U<; (Y, g2b, -gL); V1 . . . V=〉 =
〈(g1a, [> g2b [> _in(-gL) g1b]], X1); U1 . . . U<; V1 . . . V=〉

move-L-L (LF-only movement with subsequent LF-only movement)

move 〈(g1a, g1b, +gL X1); U1 . . . U<; (Y, g2b, -gL -hL X2); V1 . . . V=〉 =
〈(g1a, [> tin(-hL) [> _in(-gL) g1b]], X1); U1 . . . U<; (Y, g2b, -hL X2); V1 . . . V=〉

1 The Shortest Move Constraint (SMC) is a standard feature of MGs that has an additional benefit for our purposes: it
ensures that there is no conflict in what indices are assigned to traces. Since trace indexation is determined by movement
licensee features, by the SMC it must be the case that if two movers were to leave traces of the same index, one must
complete its movement (and thus have its trace bound by lambda abstraction) before the other can start its movement. In
other words, there will be no instances of movers “accidentally” binding other movers’ traces.

4 Pasternak & Graf

A.5 Informal illustration

Here is a brief, informal illustration of how the grammar works. Say we have the determiner every
and noun plane, with the following lexical entries:

(2) a. 〈(every, EVERY, =N D -scL)〉
b. 〈(plane, PLANE, N)〉

The feature -scL is the covert scope-taking licensee feature. When these two unary chains merge,
they create another unary chain, with more complex PF and LF trees (merge-c-N):

(3) 〈(every, EVERY, =N D -scL)〉 merge 〈(plane, PLANE, N)〉
= 〈([< every plane], [< EVERY PLANE], D -scL)〉

Now say this merges as the complement of the verb fixed, with the following lexical entry:

(4) 〈(fixed, FIX, =D V)〉

The licensee feature for every plane is -scL: it will undergo LF-only movement. As a result, what
happens when fixed and every plane merge is that the PF portion of every plane will stay with fixed,
while in the LF portion an indexed trace will be inserted that will subsequently be lambda-abstracted
over. The LF part of every plane (with a placeholder empty PF part Y) is then added to the chain,
since it is now a mover looking for its final landing spot (merge-c-L):

(5) 〈(fixed, FIX, =D V)〉 merge 〈([< every plane], [< EVERY PLANE], D -scL)〉
= 〈([< fixed [< every plane]], [< FIX tin(-scL)], V); (Y, [< EVERY PLANE], -scL)〉

Once the landing site is eventually reached, an appropriately indexed lambda abstractor is inserted
below the final landing site, and the mover is removed from the chain; since the movement is
LF-only, the PF tree is unaffected (move-L-N):

(6) move 〈([. . . [< fixed [< every plane]]], [. . . [< FIX tin(-scL)]], +scL...); (Y, [< EVERY PLANE], -scL)〉
= 〈([. . . [< fixed [< every plane]]], [> [< EVERY PLANE] [> _in(-scL) [. . . [< FIX tin(-scL)]]]], ...)〉

PF-only movement is essentially the opposite, except no lambda-abstractors are inserted, and
instead of indexed traces locations vacated by movement are simply occupied by the phonetically
empty node Y. Standard PF+LF movement is, as one may suspect, a combination of the two. The
diversity of merge and move subrules reflects the various combinations of PF-only, LF-only, and
PF+LF movement that are possible.

Note in addition that for a phonetically empty head like C, the PF representation in its lexical
entry will be Y; only the features and the LF representation will reveal that it is in fact a C head.

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 5

Appendix B Top-down parse rules for PF+LF MGs

B.1 Overview

Here we introduce the top-down parser for our revised PF+LF MGs. For reasons of space many
details have had to be presented with little to no exposition. Readers unfamiliar with top-down
MG parsing in general are encouraged to first familiarize themselves with the parser formalisms of
Kobele et al. (2013) and work cited therein; our parser builds on this work.

A top-down MG parser reconstructs an MG derivation tree from the top downward, in a way
that is sensitive to linear order in the PF phrase structure tree. Order is determined by gorn
addresses, a common formalism for assigning addresses to locations in a tree. Whereas derivations
involved chains, which were tuples of FST2s, parses utilize parse items, which are tuples of doubly
addressed feature strings (AFS2s). An AFS2—an ordered triple consisting of two gorn addresses
and a string of features—can be thought of as a prediction that some constituent occupies the first
address at PF and the second address at LF, and has the associated string of features at the relevant
point in the derivation. Parse items are tuples of AFS2s for much the same reason that chains were
tuples of FST2s: the first AFS2 makes a prediction about the “main” tree, while subsequent AFS2s
make predictions about currently-waiting movers. The gorn addresses in our formalism come with
a twist: unlike in standard MGs, here it will be possible for a mover to be predicted, but for its
address at either PF or LF to not yet be determined; in this case the relevant “address” will be the
dummy address Y. In addition to defining SLD in terms of the annotated derivation tree, as is done
in the paper, SLD can also be defined in terms of these dummy addresses: the SLD for a given
parse is the number of tokens of dummy addresses occuring throughout the parse.

We operate within a parsing-as-deduction framework (Pereira & Warren 1983): parses are deduc-
tions in which the sole axiom is the privileged initial parse item (see below), the inference rules are
the parse rules, and the goal for a successful deduction is the elimination of all parse items and the
scanning of the whole input string.

B.2 Formal definitions

A gorn address is a non-empty string of non-negative integers, denoting a location in a (phrase
structure) tree. Gorn addresses are assigned recursively, as follows:

(7) a. The address of the root node is 0.
b. For a given node 9 with address =, 9’s leftmost daughter has address =0, its next leftmost

daughter has address =1, etc.

Since all our trees are binary-branching, all digits in our gorn addresses will be 0 or 1. Let GORN

be the set of all gorn addresses, and let GORN+ := GORN∪ {Y}, the set of gorn+ addresses. The
“address” Y indicates that a given address is unknown. A doubly addressed feature string (AFS2)
is an ordered triple where the first member is a PF gorn+ address, the second is an LF gorn+ address,
and the third is a (non-empty) string of features. A parse item is an ordered tuple of AFS2s. All
parses start with the privileged parse item 〈(0, 0, C)〉, indicating that we predict the root at both
PF and LF to be a phrase headed by C; note we retain our color conventions (red = PF, blue =
LF). Parse items are ordered based on the linear order of their leftmost (non-dummy) PF address,
regardless of whether that is the address of the primary AFS2 or some other AFS2 in the parse
item. Parse operations only operate on the leftmost parse item, with all other parse items being
passed down to the next step of the parse. Thus, MG parsing is sensitive to PF linear order: the
parser takes the quickest path to scanning the leftmost unscanned element in the input string. A
parse is successful if and only if (I) the entire string has been scanned, and (II) all parse items have
been eliminated.

6 Pasternak & Graf

For the following parse rules, X (and its subscripted variants) is a variable over feature strings,
and W (and its subscripted variants) a variable over gorn addresses. � and � are variables over
(possibly empty) sequences of AFS2s. � ⊕ � indicates a (possibly empty) sequence of AFS2s
whose members can be partitioned into � and � (not necessarily by order). For AFS2 ^, �[^]
indicates that ^ is in the sequence �, with �[^′] being the sequence identical to � but replacing ^
with ^′, and �[−] being the sequence identical to � but without ^.

B.3 Unmerge operations

B.3.1 Unmerge from complement

unmerge-c-N (undoes merge-c-N)
〈(Wa, Wb, X1); �⊕ �〉

〈(Wa0, Wb0, =x X1); �〉 〈(Wa1, Wb1, x); �〉

unmerge-c-PL (undoes merge-c-PL)
〈(W1a, W1b, X1); �⊕ �[(W2a, W2b, -f X2)]〉

〈(W1a0, W1b0, =x X1); �〉 〈(W2a, W2b, x -f X2); �[−]〉

unmerge-c-P (undoes merge-c-P)
〈(W1a, W1b, X1); �⊕ �[(W2a, Y, -fP X2)]〉

〈(W1a0, W1b0, =x X1); �〉 〈(W2a, W1b1, x -fP X2); �[−]〉

unmerge-c-L (undoes merge-c-L)
〈(W1a, W1b, X1); �⊕ �[(Y, W2b, -fL X2)]〉

〈(W1a0, W1b0, =x X1); �〉 〈(W1a1, W2b, x -fL X2); �[−]〉

B.3.2 Unmerge from specifier

unmerge-s-N (undoes merge-s-N)
〈(Wa, Wb, X1); �⊕ �〉

〈(Wa1, Wb1, x= X1); �〉 〈(Wa0, Wb0, x); �〉

unmerge-s-PL (undoes merge-s-PL)
〈(W1a, W1b, X1); �⊕ �[(W2a, W2b, -f X2)]〉

〈(W1a1, W1b1, x= X1); �〉 〈(W2a, W2b, x -f X2); �[−]〉

unmerge-s-P (undoes merge-s-P)
〈(W1a, W1b, X1); �⊕ �[(W2a, Y, -fP X2)]〉

〈(W1a1, W1b1, x= X1); �〉 〈(W2a, W1b0, x -fP X2); �[−]〉

unmerge-s-L (undoes merge-s-L)
〈(W1a, W1b, X1); �⊕ �[(Y, W2b, -fL X2)]〉

〈(W1a1, W1b1, x= X1); �〉 〈(W1a0, W2b, x -fL X2); �[−]〉

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 7

B.4 Unmove operations

B.4.1 PF+LF unmove

unmove-PL-N (undoes move-PL-N)
〈(Wa, Wb, X); �〉

〈(Wa1, Wb11, +f X); �; (Wa0, Wb0, -f)〉

(⇑ Notice the extra 1 inserted in the LF gorn address: Wb11, not Wb1. This is because LF movement
inserts a lambda-abstracting node just below the landing site, so undoing LF movement requires
skipping past this extra inserted node.)

unmove-PL-PL (undoes move-PL-PL)
〈(W1a, W1b, X1); �[(W2a, W2b, -f X2)]〉

〈(W1a1, W1b11, +g X1); �[(W2a, W2b, -g -f X2)]〉

unmove-PL-P (undoes move-PL-P)
〈(W1a, W1b, X1); �[(W2a, Y, -fP X2)]〉

〈(W1a1, W1b11, +g X1); �[(W2a, W1b0, -g -fP X2)]〉

unmove-PL-L (undoes move-PL-L)
〈(W1a, W1b, X1); �[(Y, W2b, -fL X2)]〉

〈(W1a1, W1b11, +g X1); �[(W1a0, W2b, -g -fL X2)]〉

B.4.2 PF-only unmove

unmove-P-N (undoes move-P-N)
〈(Wa, Wb, X); �〉

〈(Wa1, Wb, +fP X); �; (Wa0, Y, -fP)〉

unmove-P-P (undoes move-P-P)
〈(W1a, W1b, X1); �[(W2a, Y, -fP X2)]〉

〈(W1a1, W1b, +gP X1); �[(W2a, Y, -gP -fP X2)]〉

B.4.3 LF-only unmove

unmove-L-N (undoes move-L-N)
〈(Wa, Wb, X); �〉

〈(Wa, Wb11, +fL X); �; (Y, Wb0, -fL)〉

unmove-L-L (undoes move-L-L)
〈(W1a, W1b, X1); �[(Y, W2b, -fL X2)]〉

〈(W1a, W1b11, +gL X1); �[(Y, W2b, -gL -fL X2)]〉

B.4.4 Scan

scan
〈(Wa, Wb, X)〉 (where the lexicon contains some entry 〈(U, V, X)〉, and U = Y or U is the

next element in the input string)

8 Pasternak & Graf

Appendix C Annotated Derivation Trees

C.1 Monoclausal (A technician inspected every plane)

C.1.1 Surface scope with object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL)〉 〈(plane, PLANE, N)〉
〈(inspected, INSPECT, =D V)〉 〈(Y, V, =V D= +scL v)〉
〈(a, A, =N D -nom)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
5EP6

6EP7

7DP8

8a9
8technician10

7E′12

12E13
12VP14

14inspected15
14DP16

16every17
16plane18

SUMMED LOCATION DIFFERENTIAL (SLD):

(14−6) = 8

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 9

C.1.2 Surface scope without object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D)〉 〈(plane, PLANE, N)〉
〈(inspected, INSPECT, =D V)〉 〈(Y, V, =V D= v)〉
〈(a, A, =N D -nom)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T10
5EP6

6DP7

7a8
7technician9

6E′11

11E12
11VP13

13inspected14
13DP15

15every16
15plane17

SUMMED LOCATION DIFFERENTIAL (SLD):

0

10 Pasternak & Graf

C.1.3 Inverse scope low

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL)〉 〈(plane, PLANE, N)〉
〈(inspected, INSPECT, =D V)〉 〈(Y, V, =V D= +scL v)〉
〈(a, A, =N D -nomP)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nomP T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
5EP6

6EP7

7DP8

8a9
8technician10

7E′12

12E13
12VP14

14inspected15
14DP16

16every17
16plane18

SUMMED LOCATION DIFFERENTIAL (SLD):

(7−4) + (14−6) = 11

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 11

C.1.4 Inverse scope high

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL)〉 〈(plane, PLANE, N)〉
〈(inspected, INSPECT, =D V)〉 〈(Y, V, =V D= +scL v)〉
〈(a, A, =N D -nom)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nom +scL T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4TP5

5T′6

6T12
6EP7

7EP8

8DP9

9a10
9technician11

8E′13

13E14
13VP15

15inspected16
15DP17

17every18
17plane19

SUMMED LOCATION DIFFERENTIAL (SLD):

(15−4) = 11

12 Pasternak & Graf

C.2 try-type (A technician tried to inspect every plane)

C.2.1 Surface scope with object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(tried, TRY, =v V)〉
〈(Y, V, =V D= v)〉 〈(a, A, =N D -nom)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T10
5EP6

6DP7

7a8
7technician9

6E′11

11E12
11VP13

13tried14
13EP15

15EP16

16PRO17
16E′18

18E19
(to)

18VP20

20inspect21
20DP22

22every23
22plane24

SUMMED LOCATION DIFFERENTIAL (SLD):

(20−15) = 5

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 13

C.2.2 Surface scope without object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= v)〉 〈(Y, PRO, D)〉 〈(tried, TRY, =v V)〉
〈(Y, V, =V D= v)〉 〈(a, A, =N D -nom)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T10
5EP6

6DP7

7a8
7technician9

6E′11

11E12
11VP13

13tried14
13EP15

15PRO16
15E′17

17E18
(to)

17VP19

19inspect20
19DP21

21every22
21plane23

SUMMED LOCATION DIFFERENTIAL (SLD):

0

14 Pasternak & Graf

C.2.3 Inverse scope low

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(tried, TRY, =v V)〉
〈(Y, V, =V D= +scL v)〉 〈(a, A, =N D -nomP)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nomP T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
5EP6

6EP7

7DP8

8a9
8technician10

7E′12

12E13
12VP14

14tried15
14EP16

16EP17

17PRO18
17E′19

19E20
(to)

19VP21

21inspect22
21DP23

23every24
23plane25

SUMMED LOCATION DIFFERENTIAL (SLD):

(7−4) + (21−6) = 18

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 15

C.2.4 Inverse scope high

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(tried, TRY, =v V)〉
〈(Y, V, =V D= +scL)〉 〈(a, A, =N D -nom)〉 〈(technician, TECHNICIAN, N)〉
〈(Y, T, =v +nom +scL T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4TP5

5T′6

6T12
6EP7

7EP8

8DP9

9a10
9technician11

8E′13

13E14
13VP15

15tried16
15EP17

17EP18

18PRO19
18E′20

20E21
(to)

20VP22

22inspect23
22DP24

24every25
24plane26

SUMMED LOCATION DIFFERENTIAL (SLD):

(22−4) = 18

16 Pasternak & Graf

C.3 decide-type (A technician decided to inspect every plane)

C.3.1 Surface scope with object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(Y, WOLL, =v w)〉
〈(decided, DECIDE, =w V)〉 〈(Y, V, =V D= v)〉 〈(a, A, =N D -nom)〉
〈(technician, TECHNICIAN, N)〉 〈(Y, T, =v +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T10
5EP6

6DP7

7a8
7technician9

6E′11

11E12
11VP13

13decided14
13WOLLP15

15WOLL16
15EP17

17EP18

18PRO19
18E′20

20E21
(to)

20VP22

22inspect23
22DP24

24every25
24plane26

SUMMED LOCATION DIFFERENTIAL (SLD):

(22−17) = 5

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 17

C.3.2 Surface scope without object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= v)〉 〈(Y, PRO, D)〉 〈(Y, WOLL, =v w)〉
〈(decided, DECIDE, =w V)〉 〈(Y, V, =V D= v)〉 〈(a, A, =N D -nom)〉
〈(technician, TECHNICIAN, N)〉 〈(Y, T, =v +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T10
5EP6

6DP7

7a8
7technician9

6E′11

11E12
11VP13

13decided14
13WOLLP15

15WOLL16
15EP17

17PRO18
17E′19

19E20
(to)

19VP21

21inspect22
21DP23

23every24
23plane25

SUMMED LOCATION DIFFERENTIAL (SLD):

0

18 Pasternak & Graf

C.3.3 Inverse scope low, WOLLP a movement domain

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(Y, WOLL, =v +scL w)〉
〈(decided, DECIDE, =w V)〉 〈(Y, V, =V D= +scL v)〉 〈(a, A, =N D -nomP)〉
〈(technician, TECHNICIAN, N)〉 〈(Y, T, =v +nomP T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
5EP6

6EP7

7DP8

8a9
8technician10

7E′12

12E13
12VP14

14decide15
14WOLLP16

16WOLL′17

17WOLL18
17EP19

19EP20

20PRO21
20E′22

22E23
(to)

22VP24

24inspect25
24DP26

26every27
26plane28

SUMMED LOCATION DIFFERENTIAL (SLD):

(7−4) + (24−6) = 21

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 19

C.3.4 Inverse scope low, WOLLP not a movement domain

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(Y, WOLL, =v w)〉
〈(decided, DECIDE, =w V)〉 〈(Y, V, =V D= +scL v)〉 〈(a, A, =N D -nomP)〉
〈(technician, TECHNICIAN, N)〉 〈(Y, T, =v +nomP T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
5EP6

6EP7

7DP8

8a9
8technician10

7E′12

12E13
12VP14

14decide15
14WOLLP16

16WOLL17
16EP18

18EP19

19PRO20
19E′21

21E22
(to)

21VP23

23inspect24
23DP25

25every26
25plane27

SUMMED LOCATION DIFFERENTIAL (SLD):

(7−4) + (23−6) = 20

20 Pasternak & Graf

C.3.5 Inverse scope high, WOLLP a movement domain

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL -scL -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(Y, WOLL, =v +scL w)〉
〈(decided, DECIDE, =w V)〉 〈(Y, V, =V D= +scL v)〉 〈(a, A, =N D -nom)〉
〈(technician, TECHNICIAN, N)〉 〈(Y, T, =v +nom +scL T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4TP5

5T′6

6T12
6EP7

7EP8

8DP9

9a10
9technician11

8E′13

13E14
13VP15

15decide16
15WOLLP17

17WOLL′18

18WOLL19
18EP20

20EP21

21PRO22
21E′23

23E24
(to)

23VP25

25inspect26
25DP27

27every28
27plane29

SUMMED LOCATION DIFFERENTIAL (SLD):

(25−4) = 21

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 21

C.3.6 Inverse scope high, WOLLP not a movement domain

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL -scL)〉 〈(plane, PLANE, N)〉 〈(inspect, INSPECT, =D V)〉
〈(to, V, =V D= +scL v)〉 〈(Y, PRO, D)〉 〈(Y, WOLL, =v w)〉
〈(decided, DECIDE, =w V)〉 〈(Y, V, =V D= +scL v)〉 〈(a, A, =N D -nom)〉
〈(technician, TECHNICIAN, N)〉 〈(Y, T, =v +nom +scL T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4TP5

5T′6

6T12
6EP7

7EP8

8DP9

9a10
9technician11

8E′13

13E14
13VP15

15decide16
15WOLLP17

17WOLL18
17EP19

19EP20

20PRO21
20E′22

22E23
(to)

22VP24

24inspect25
24DP26

26every27
26plane28

SUMMED LOCATION DIFFERENTIAL (SLD):

(24−4) = 20

22 Pasternak & Graf

C.4 wh-movement

LEXICAL ENTRIES:

〈(what, WHAT, D -wh -wh -wh)〉 〈(inspect, INSPECT, =D V)〉 〈(to, V, =V D= +wh v)〉
〈(Y, PRO, D)〉 〈(try, TRY, =v V)〉 〈(Y, V, =V D= +wh v)〉
〈(a, A, =N D -nom)〉 〈(technician, TECHNICIAN, N)〉 〈(did, T, =v +nom T)〉2
〈(Y, C, =T +wh C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C′3

3C15
3TP4

4T′5

5T19
(did)

5EP6

6EP7

7DP16

16a17
16technician18

7E′8

8E20
8VP9

9try21
9EP10

10EP11

11PRO22
11E′12

12E23
(to)

12VP13

13inspect24
13what14

SUMMED LOCATION DIFFERENTIAL (SLD):

0
2 Because on our analysis T is pronounced did, and because for simplicity’s sake we do not include the standard T-to-C

head movement, the generated string is actually What a technician did try to inspect. This can of course be fixed by
introducing head movement, something that is known to be non-problematic for normal MGs.

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 23

C.5 Subject vs. negation (Every student did not pass the test)

C.5.1 Surface scope

LEXICAL ENTRIES:

〈(the, THE, =N D)〉 〈(test, TEST, N)〉 〈(pass, PASS, =D V)〉
〈(Y, V, =V D= v)〉 〈(every, EVERY, =N D -nom)〉 〈(student, STUDENT, N)〉
〈(not, NEG, =v Neg)〉 〈(did, T, =Neg +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
(did)

5NegP6

6not12
6EP7

7DP8

8every9
8student10

7E′13

13E14
13VP15

15pass16
15DP17

17the18
17test19

SUMMED LOCATION DIFFERENTIAL (SLD):

0

24 Pasternak & Graf

C.5.2 Inverse scope

LEXICAL ENTRIES:

〈(the, THE, =N D)〉 〈(test, TEST, N)〉 〈(pass, PASS, =D V)〉
〈(Y, V, =V D= v)〉 〈(every, EVERY, =N D -nomP)〉 〈(student, STUDENT, N)〉
〈(not, NEG, =v Neg)〉 〈(did, T, =Neg +nomP T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
(did)

5NegP6

6not12
6EP7

7DP8

8every9
8student10

7E′13

13E14
13VP15

15pass16
15DP17

17the18
17test19

SUMMED LOCATION DIFFERENTIAL (SLD):

(7−4) = 3

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 25

C.6 Object vs. negation (Mary did not feed every patient)

C.6.1 Surface scope with object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL)〉 〈(patient, PATIENT, N)〉 〈(feed, FEED, =D V)〉
〈(Y, V, =V D= +scL v)〉 〈(Mary, MARY, D -nom)〉 〈(not, NEG, =v Neg)〉
〈(did, T, =Neg +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T10
(did)

5NegP6

6not11
6EP7

7EP8

8Mary9
8E′12

12E13
12VP14

14feed15
14DP16

16every17
16patient18

SUMMED LOCATION DIFFERENTIAL (SLD):

(14−7) = 7

26 Pasternak & Graf

C.6.2 Surface scope without object QR

LEXICAL ENTRIES:

〈(every, EVERY, =N D)〉 〈(patient, PATIENT, N)〉 〈(feed, FEED, =D V)〉
〈(Y, V, =V D= v)〉 〈(Mary, MARY, D -nom)〉 〈(not, NEG, =v Neg)〉
〈(did, T, =Neg +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T9
(did)

5NegP6

6not10
6EP7

7Mary8
7E′11

11E12
11VP13

13feed14
13DP15

15every16
15patient17

SUMMED LOCATION DIFFERENTIAL (SLD):

0

Cyclic scope and processing difficulty in a Minimalist parser: Appendices 27

C.6.3 Inverse scope

LEXICAL ENTRIES:

〈(every, EVERY, =N D -scL -scL)〉 〈(patient, PATIENT, N)〉 〈(feed, FEED, =D V)〉
〈(Y, V, =V D= +scL v)〉 〈(Mary, MARY, D -nom)〉 〈(not, NEG, =v +scL Neg)〉
〈(did, T, =Neg +nom T)〉 〈(Y, C, =T C)〉

ANNOTATED DERIVATION TREE:

1CP2

2C3
2TP4

4T′5

5T11
(did)

5NegP6

6NegP7

7not12
7EP8

8EP9

9Mary10
9E′13

13E14
13VP15

15feed16
15DP17

17every18
17patient19

SUMMED LOCATION DIFFERENTIAL (SLD):

(15−6) = 9

28 Pasternak & Graf

C.7 Summary

C.7.1 Cyclic QR

surface, object QR surface, no object QR inverse, low inverse, high
monoclausal 8 0 11 11
try-type 5 0 18 18
decide-type 5 0 21/20 21/20

C.7.2 Quantifiers vs. negation

surface, object QR surface, no object QR inverse
subject N/A 0 3
object 7 0 9

References

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.
Kobele, Gregory M., Sabrina Gerth & John T. Hale. 2013. Memory resource allocation in top-down

Minimalist parsing. In Glyn Morrill & Mark-Jan Nederhof (eds.), Formal grammar: 17th and
18th international conferences, 32–51.

Pereira, Fernando C.N. & David Warren. 1983. Parsing as deduction. In 21st annual meeting of the
association for computational linguistics, 137–144. Cambridge, MA: MIT.

Stabler, Edward & Edward Keenan. 2003. Structural similarity within and among languages.
Theoretical Computer Science 293(2). 345–363.

